📄 nnclassfn.m
字号:
%function [testPerf,rankmat,rank] = nnclassFn(train,test,trainClass,answer)
%
%Reads in training examples, test examples, class labels of training
%examples, and correct class of test examples. Data are in columns of train
%and test, and labels are column vectors.
%Gets matrix of normalized dot products. Outputs nearest neighbor
%classification of test examples and percent correct.
%rankmat gives the top 30 matches for each test image. rank is a vector
%containing the percent of times the correct match is in the top N matches.
function [testPerf,rankmat,rank] = nnclassFn(train,test,trainClass,answer);
numTest = size(test,2);
numTrain = size(train,2);
%Get distances to training examples
%dists = eucDist(test,train); %Outputs a Ntest x Ntrain matrix of Euc dist
dists=-1 * cosFn(test,train);%Outputs a Ntest x Ntrain matrix of cosines
%sort the rows of dists to find the nearest training example:
[Sdist,nearest] = sort(dists'); %cols of Sdist are distances in ascend order
%1st row of nearest is index of 1st closest training example
%Create vector with nearest example, and vector with class label.
Nnbr = nearest(1,:); %First row of nearest contains NN
%Nnbr = nearest(2,:);
testClass = trainClass(Nnbr);
correct = find( (testClass - answer == 0));
testPerf = size(correct,1) / size(answer,1)
if(size(correct,2)>size(correct,1))
testPerf = size(correct,2) / size(answer,2)
'check vector orientation'
end
%get rank = %correct in top N:
cumtestPerf=0;
for i = 1:30
rankmat(:,i) = trainClass(nearest(i,:)');
correcti = find( (rankmat(:,i) - answer == 0));
cumtestPerf = cumtestPerf + size(correcti,1) / size(answer,1);
rank(i) = cumtestPerf;
end
%For FERET test, want probeID (answer), then rank, then matched ID no.,
%then FA flag, then "matching score". This will be a matrix with:
%probe rank match FAflag matching score
%i 1 trainClass(nearest(i,:)) Sdist(:,i)>4.7 1./Sdist(:,i)
%i 2 OR rankmat(i,:)'
%i 3
%i 4
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -