⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 kpca.m

📁 基于半监督的核主元分析matlab代码
💻 M
字号:
  function a = kpca(hyper)   %================================================================================   % KPCA kpca object - Kernel Principal Components Analysis  %================================================================================    % A=KPCA(H) returns a kpca object initialized with hyperparameters H.   %  % Hyperparameters, and their defaults  %  feat=0;              -- number of features, default 0 means all via rank(K) %  center_data=1;       -- if data is to be centered in feature space%  child=linear         -- child stores the kernel. Default is the linear%                          kernel and therefore normal pca. %                          NOTE: This has changed. The old version was%                          assuming a kernel matrix as data. In order to%                          simulate the old behaviour use custom kernel.% Model  %  e_val                -- the eigenvectors  %  e_vec                -- the eigenvalues  %  dat                  -- training data (that we extracted from)  %  % Methods:  %  train, test  %================================================================================% Reference : Nonlinear component analysis as a kernel eigenvalue problem% Author    : B.燬ch鰈kopf, A.燬mola, and K.-R. M黮ler% Link      : http://www.kernel-machines.org/papers/nlpca.ps.gz%================================================================================      %hyperparams     a.feat=0;    a.center_data = 1;  a.child=kernel('linear');        % model     a.e_vec=[]; % eigenvectors    a.e_val=0;  % eigenvalues    a.dat=[];    a.Kt=[];  p=algorithm('kpca');    a= class(a,'kpca',p);       if nargin==1,      eval_hyper;    end;   

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -