📄 my_importanceweights3.m
字号:
function q =my_importanceweights3(xu,y,R);
% PURPOSE : Computes the normalised importance ratios for the
% model described in the file sirdemo1.m.
% INPUTS : - xu = The predicted state samples.
% - y = The output measurements.
% - R = The measurement noise covariance.
% OUTPUTS : - q = The normalised importance ratios.
% how to invoke t=1:49
% q(:,t+1) = importanceweights(xu(:,t),y(t+1,1),R); y is a number here.
if nargin < 3, error('Not enough input arguments.'); end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
syms F_beta F_r F_alpha r alpha beta w v xc yc zc;
F_r=sqrt(xc.^2+yc.^2+zc.^2);
F_alpha=atan(yc./xc);
F_beta=atan(zc./sqrt(xc.^2+yc.^2));
w=[F_r;F_alpha;F_beta];
v=[xc,yc,zc];
[rows,S] = size(xu); % xu 5-500 Matrix
q = zeros(size(xu)); % q 1-500
for i=1:S,
h_xu(:,i)=subs(w,{xc,yc,zc},{xu(1,i) xu(3,i) xu(5,i)}); % h_xu 3-500;
unormalized_q(1,i)=exp(-.5*(y-h_xu(:,i))'* R^(-1) *(y- h_xu(:,i))); %Note here y is a number not a vector
end;
q_sum=sum(unormalized_q);
q=unormalized_q./q_sum;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -