📄 gafault.m
字号:
% 用GA训练BP网络的权值、阈值
tic, % 开始计时
[P,T,R,S1,S2,S]=nninit; % BP网络初始化
aa=ones(S,1)*[-1 1];
popu=60; % 初始种群个数
initPpp=initializega(popu,aa,'gabpEval');
gen=700; % 遗传代数
[x endPop bPop trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,...
'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);
%%Lets take a look at the performance of the ga during the run
subplot(2,1,1)
plot(trace(:,1),1./trace(:,3),'r-')
hold on
plot(trace(:,1),1./trace(:,2),'b-')
xlabel('Generation');
ylabel('Sum-Squared Error');
subplot(2,1,2)
plot(trace(:,1),trace(:,3),'r-')
hold on
plot(trace(:,1),trace(:,2),'b-')
xlabel('Generation');
ylabel('Fittness');
% 从编码x中解码出BP网络所对应的权值、阈值
[W1 B1 W2 B2]=gadecod(x);
% 仿真结果
TT=simuff(P,W1,B1,'tansig',W2,B2,'purelin')
E=sum((T-TT).^2)./10;
E=sqrt(E)
e1=(T-TT)./T
c=poststd(TT,meant,stdt)
toc % 结束计时
xk1=input(' please input .....xk==')
pnew=xk1';
pnew=trastd(pnew,meanp,stdp);%将数据通过自标准化再用来输入网络
an=simuff(pnew,W1,B1,'tansig',W2,B2,'purelin')%网络模拟出来的值
anew=poststd(an,meant,stdt)%模拟出的值再线性返回样本预测值
tk1=input(' please input .....tk==')
e2=(tk1-anew)./tk1
xk2=input(' please input .....xk==')
pnew=xk2';
pnew=trastd(pnew,meanp,stdp);%将数据通过自标准化再用来输入网络
an=simuff(pnew,W1,B1,'tansig',W2,B2,'purelin')%网络模拟出来的值
anew=poststd(an,meant,stdt)%模拟出的值再线性返回样本预测值
tk2=input(' please input .....tk==')
e2=(tk2-anew)./tk2
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -