📄 53569
字号:
When you install a GFCI, it's a good idea to use the little "ground fault protected" stickers that come with it and mark the outlets downstream of the GFCI. You can figure out which outlets are "downstream", simply by tripping the GFCI with the test button and see which outlets are dead.Subject: What's the purpose of the ground prong on an outlet, then? Apart from their use in electronics, which we won't comment on, and for certain fluorescent lights (they won't turn on without a good ground connection), they're intended to guard against insulation failures within the device. Generally, the case of the appliance is connected to the ground lead. If there's an insulation failure that shorts the hot lead to the case, the ground lead conducts the electricity away safely (and possibly trips the circuit breaker in the process). If the case is not grounded and such a short occurs, the case is live -- and if you touch it while you're grounded, you'll get zapped. Of course, if the circuit is GFCI-protected, it will be a very tiny zap -- which is why you can use GFCIs to replace ungrounded outlets (both NEC and CEC). There are some appliances that should *never* be grounded. In particular, that applies to toasters and anything else with exposed conductors. Consider: if you touch the heating electrode in a toaster, and you're not grounded, nothing will happen. If you're slightly grounded, you'll get a small shock; the resistance will be too high. But if the case were grounded, and you were holding it, you'd be the perfect path to ground...Subject: Why is one prong wider than the other? Polarization Nowadays, many two-prong devices have one prong wider than the other. This is so that the device could rely (not guaranteed!) on one specific wire being neutral, and the other hot. This is particularly advantageous in light fixtures, where the the shell should neutral (safety), or other devices which want to have an approximate ground reference (ie: some radios). Most 2-prong extension cords have wide prongs too. This requires that you wire your outlets and plugs the right way around. You want the wide prong to be neutral, and the narrow one hot. Most outlets have a darker metal for the hot screw, and lighter coloured screw for the neutral. If not, you can usually figure out which is which by which prong the terminating screw connects to.Subject: What kind of outlets do I need in a kitchen? The NEC requires at least two 20 amp ``small appliance circuits'' for kitchens. The CEC requires split-duplex receptacles. Outlets must be installed such that no point is more than 24" (NEC) (900 mm CEC) from an outlet. Every counter wider than 12" (NEC) or 300 mm (CEC) must have at least one outlet. The circuit these outlets are on may not feed any outlets except in the kitchen, pantry, or dining room. Furthermore, these circuits are in addition to any required for refrigerators, stoves, microwaves, lighting, etc. Non-dedicated outlets within 6' of a sink *must* be protected by a GFCI (NEC only). Split duplex receptacles are fed with a 220V circuit. The tab is broken on the hot side of the outlet, and one hot goes to the upper outlet, and the other hot goes to the lower outlet. The neutral connects to both outlets through one screw. When "carrying through" to another outlet, the neutral must be pigtailed, such that removing the outlet, or having the neutral connection fall off doesn't cause the neutral to disconnect from downstream outlets.Subject: Where must outlets and switches be in bathrooms? There must be at least one outlet in each bathroom, adjacent to the sink, in addition to any outlet that may be incorporated in the light fixture. All such outlets *must* be GFCI-protected.Subject: What is Romex/NM/NMD? What is BX? When should I use each? Romex is a brand name for a type of plastic insulated wire. Sometimes called non-metallic sheath. The formal name is NM. This is suitable for use in dry, protected areas (ie: inside stud walls, on the sides of joists etc.), that are not subject to mechanical damage or excessive heat. Most newer homes are wired almost exclusively with NM wire. There are several different categories of NM cable. BX cable -- technically known as armored cable or "AC" has a flexible aluminum or steel sheath over the conductors and is fairly resistant to damage. TECK cable is AC with an additional external thermoplastic sheath. Protection for cable in concealed locations: where NM or AC cable is run through studs, joists or similar wooden members, the outer surface of the cable must be kept at least 32mm/1.25" (CEC & NEC) from the edges of the wooden members, or the cable should be protected from mechanical injury. This latter protection can take the form of metal plates (such as spare outlet box ends) or conduit. [Note: inspector-permitted practise in Canada suggests that armored cable, or flexible conduit can be used as the mechanical protection, but this is technically illegal.] Additional protection recommendations (these are rules in the Canadian codes - they are reasonable answers to the vague references to "exposed to mechanical damage" in both the NEC and CEC): - NM cable should be protected against mechanical damage where it passes through floors or on the surface of walls in exposed locations under 5 feet from the floor. Ie: use AC instead, flexible conduit, wooden guards etc. - Where cable is suspended, as in, connections to furnaces or water heaters, the wire should be protected. Canadian practise is usually to install a junction or outlet box on the wall, and use a short length of AC cable or NM cable in flexible conduit to "jump" to the appliance. Stapling NM to a piece of lumber is also sometimes used. - Where NM cable is run in close proximity to heating ducts or pipe, heat transfer should be minimized by means of a 25mm/1" air space, or suitable insulation material (a wad of fiberglass). - NM cable shall be supported within 300mm/1' of every box or fitting, and at intervals of no more than 1.5m/5'. Holes in joists or studs are considered "supports". Some slack in the cable should be provided adjacent to each box. [while fishing cable is technically in violation, it is permitted where "proper" support is impractical] - 2 conductor NM cable should never be stapled on edge. [Knight also insists on only one cable per staple, referring to the "workmanship" clause, but this seems more honoured in the breach...] - cable should never be buried in plaster, cement or similar finish. - cable should be protected where it runs behind baseboards. - Cable may not be run on the upper edge of ceiling joists or the lower edges of rafters where the headroom is more than 1m (39"). Whenever BX cable is terminated at a box with a clamp, small plastic bushings must be inserted in the end of the cable to prevent the clamps forcing the sharp ends of the armor through the insulation. BX is sometimes a good idea in a work shop unless covered by solid wall coverings. In places where damage is more likely (like on the back wall of a garage ;-), you may be required to use conduit, a UL- (or CSA-) approved metal pipe. You use various types of fittings to join the pipe or provide entrance/exit for the wire. Service entrances frequently use a plastic conduit. In damp places (eg: buried wiring to outdoor lighting) you will need special wire (eg: CEC NMW90, NEC UF). NMW90 looks like very heavy-duty NMD90. You will usually need short lengths of conduit where the wire enters/exits the ground. [See underground wiring section.] Thermoplastic sheath wire (such as NM, NMW etc.) should not be exposed to direct sunlight unless explicitly approved for that purpose. Many electrical codes do not permit the routing of wire through furnace ducts, including cold air return plenums constructed by metal sheeting enclosing joist spaces. The reason for this is that if there's a fire, the ducting will spread toxic gasses from burning insulation very rapidly through the building. Teflon insulated wire is permitted in plenums in many areas. Canada appears to use similar wire designations to the US, except that Canadian wire designations usually include the temperature rating in Celsius. Eg: "AC90" versus "AC". In the US, NM-B is 90 degrees celcius. NOTE: local codes vary. This is one of the items that changes most often. Eg: Chicago codes require conduit *everywhere*. There are very different requirements for mobile homes. Check your local codes, *especially* if you're doing anything that's the slightest out of the ordinary. Wire selection table (incomplete - the real tables are enormous, uncommon wire types or applications omitted) Condition Type CEC NEC Exposed/Concealed dry plastic NMD90 NM armor AC90 AC TECK90 Exposed/Concealed damp plastic NMD90 NMC armor ACWU90 TECK90 Exposed/Concealed wet plastic NMWU90 armor ACWU90 TECK90 Exposed to weather plastic NMWU TW etc. armor TECK90 Direct earth burial/ plastic NMWU* UF Service entrance RWU TWU armor RA90 TECK90 ACWU90 [* NMWU not for service entrance]Subject: Should I use plastic or metal boxes? The NEC permits use of plastic boxes with non-metallic cable only. The reasoning is simple -- with armored cable, the box itself provides ground conductor continuity. U.S. plastic boxes don't use metal cable clamps. The CEC is slightly different. The CEC never permits cable armor as a grounding conductor. However, you must still provide ground continuity for metallic sheath. The CEC also requires grounding of any metal cable clamps on plastic boxes. The advantage of plastic boxes is comparatively minor even for non-metallic sheathed cable -- you can avoid making one ground connection and they sometimes cost a little less. On the other hand, plastic boxes are more vulnerable to impacts. For exposed or shop wiring, metal boxes are probably better.Subject: Junction box positioning? A junction box is a box used only for connecting wires together. Junction boxes must be located in such a way that they're accessible later. Ie: not buried under plaster. Excessive use of junction boxes is often a sign of sloppy installation, and inspectors may get nasty.Subject: Can I install a replacement light fixture? In general, one can replace fixtures freely, subject to a few caveats. First, of course, one should check the amperage rating of the circuit. If your heart is set on installing half a dozen 500 watt floodlights, you may need to run a new wire back to the panel box. But there are some more subtle constraints as well. For example, older house wiring doesn't have high-temperature insulation. The excess heat generated by a ceiling-mounted lamp can and will cause the insulation to deteriorate and crack, with obvious bad results. Some newer fixtures are specifically marked for high temperature wire only. (You may find, in fact, that your ceiling wiring already has this problem, in which case replacing any devices is a real adventure.) Other concerns include providing a suitable ground for some fluorescent fixtures, and making sure that the ceiling box and its mounting are strong enough to support the weight of a heavy chandelier or ceiling fan. You may need to install a new box specifically listed for this purpose. A 2x4 across the ceiling joists makes a good support. Metal brackets are also available that can be fished into ceilings thru the junction box hole and mounted between the joists. There are special rules for recessed light fixtures such as "pot" lamps or heat lamps. When these are installed in insulated ceilings, they can present a very substantial fire hazard. The CEC provides for the installation of pot lamps in insulated ceilings, provided that the fixture is boxed in a "coffin" (usually 8'x16"x12" - made by making a pair of joists 12" high, and covering with plywood) that doesn't have any insulation. (Yes, that's 8 *feet* long) NEC rules are somewhat less stringent. They require at least 3" clearance between the fixture and any sort of thermal insulation. The rules also say that one should not obstruct free air movement, which means that a CEC-style ``coffin'' might be worthwhile. Presumably, that's up to the local inspector. [The CEC doesn't actually mandate the coffin per-se, this seems to be an inspector requirement to make absolutely certain that the fixture can't get
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -