📄 rfc2041.txt
字号:
running tcpdump to capture this additional data, we have chosen to follow an integrative approach to ease trace file administration. We have kept the lessons of tcpdump and BPF to heart; namely copying only the information necessary, and transferring data up to user level in batches. It may well pay to investigate either incorporating device and location information directly into BPF, or taking the flexible filtering mechanism of BPF and including it in our trace collection software. For the moment, we do not know exactly what data we will need to explore the properties of mobile networks, and therefore do not exclude any data. There are three notable systems that provide packet modulation similar to PaM. The earliest such work is Delayline, a system designed to emulate wide-area networks atop local-area ones; a goalNoble, et. al. Informational [Page 22]RFC 2041 Mobile Network Tracing October 1996 similar to PaM's. The most striking difference between Delayline and PaM is that Delayline's emulation takes place entirely at the user- level, and requires applications to be recompiled against a library emulating the BSD socket system and library calls. While this is a portable approach that works well in the absence of kernel-level source access, it has the disadvantage that not all network traffic passes through the emulation layer; such traffic may have a profound impact on the performance of the final system. Delayline also differs from PaM in that the emulated network uses a single set of parameters for each emulated connection; performance remains fairly constant, and cannot change much over time. The Lancaster network emulator was designed explicitly to model mobile networks. Rather than providing per-host modulation, it uses a single, central server through which all network traffic from instrumented applications passes. While this system also does not capture all traffic into and out of a particular host, it does allow modulation based on multiple hosts sharing a single emulated medium. There is a mechanism to change the parameters of emulation between hosts, though it is fairly cumbersome. The system uses a configuration file that can be changed and re-read while the system is running. The system closest in spirit to PaM is the Probe/Fault Injection Tool. This system's design philosophy allows an arbitrary protocol layer -- including device drivers -- to be encapsulated by a layer below to modulate existing traffic, and a layer above to generate test traffic. The parameters of modulation are provided by a script in an interpreted language, presently Tcl, providing considerable flexibility. However, there is no mechanism to synthesize such scripts -- they must be explicitly designed. Furthermore, the use of an interpreted language such as Tcl limits the use of PFI to user- level implementations of network drivers, and may have performance implications.7. Future Work This work is very much in its infancy; we have only begun to explore the possible uses for mobile network traces. We have uncovered several areas of further work. The trace format as it stands is very IP-centric. While one could imagine using unknown IP addresses for non-IP hosts, while using header-only properties to encode other addressing schemes, this is cumbersome at best. We are looking into ways to more conveniently encode other addressing schemes, but are content to focus on IP networks for the moment.Noble, et. al. Informational [Page 23]RFC 2041 Mobile Network Tracing October 1996 Two obvious questions concerning wireless media are the following. How does a group of machines perform when sharing the same bandwidth? How asymmetric is the performance of real-world wireless channels? While we do have tools for merging traces taken from multiple hosts into a single trace file, we've not yet begun to examine such multiple-host scenarios in depth. We are also looking into instrumenting wireless base stations as well as end-point hosts. Much of our planned work involves the PaM testbed. First and foremost, many wireless channels are known to be asymmetric; splitting the replay trace into incoming and outgoing modulation entries is of paramount importance. We would like to extend PaM to handle multiple emulated interfaces as well as applying different modulation parameters to packets from or to different destinations. One could also imagine tracing performance from several different networking environments, and switching between such environments under application control. For example, consider a set of traces showing radio performance at various altitudes; an airplane simulator in a dive would switch from high-altitude modulation traces to low- altitude ones. Finally, we are anxious to begin exploring the properties of real- world mobile networks, and subjecting our own mobile system designs to PaM to see how they perform. We hope others can make use of our tools to do the same.Acknowledgements The authors wish to thank Dave Johnson, who provided early pointers to related work and helped us immeasurably in RFC formatting. We also wish to thank those who offered comments on early drafts of the document: Mike Davis, Barbara Denny, Mark Lewis, and Hui Zhang. Finally, we would like to thank Bruce Maggs and Chris Hobbs, our first customers! This research was supported by the Air Force Materiel Command (AFMC) and ARPA under contract numbers F196828-93-C-0193 and DAAB07-95-C- D154, and the State of California MICRO Program. Additional support was provided by AT&T, Hughes Aircraft, IBM Corp., Intel Corp., and Metricom. The views and conclusions contained here are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either express or implied, of AFMC, ARPA, AT&T, Hughes, IBM, Intel, Metricom, Carnegie Mellon University, the University of California, the State of California, or the U.S. Government.Noble, et. al. Informational [Page 24]RFC 2041 Mobile Network Tracing October 1996Security Considerations This RFC raises no security considerations.Authors' Addresses Questions about this document can be directed to the authors: Brian D. Noble Computer Science Department Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213-3891 Phone: +1-412-268-7399 Fax: +1-412-268-5576 EMail: bnoble@cs.cmu.edu Giao T. Nguyen Room 473 Soda Hall #1776 (Research Office) University of California, Berkeley Berkeley, CA 94720-1776 Phone: +1-510-642-8919 Fax: +1-510-642-5775 EMail: gnguyen@cs.berkeley.edu Mahadev Satyanarayanan Computer Science Department Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213-3891 Phone: +1-412-268-3743 Fax: +1-412-268-5576 EMail: satya@cs.cmu.edu Randy H. Katz Room 231 Soda Hall #1770 (Administrative Office) University of California, Berkeley Berkeley, CA 94720-1770 Phone: +1-510-642-0253 Fax: +1-510-642-2845 EMail: randy@cs.berkeley.eduNoble, et. al. Informational [Page 25]RFC 2041 Mobile Network Tracing October 1996References [1] Chen, J. B., and Bershad, B. N. The Impact of Operating System Structure on Memory System Performance. In Proceedings of the 14th ACM Symposium on Operating System Principles (Asheville, NC, December 1993). [2] Dahlin, M., Mather, C., Wang, R., Anderson, T., and Patterson, D. A Quantitative Analysis of Cache Policies for Scalable Network File Systems. In Proceedings of the 1994 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems (Nashville, TN, May 1994). [3] Davies, N., Blair, G. S., Cheverst, K., and Friday, A. A Network Emulator to Support the Development of Adaptive Applications. In Proceedings of the 2nd USENIX Symposium on Mobile and Location Independent Computing (April 10-11 1995). [4] Dawson, S., and Jahanian, F. Probing and Fault Injection of Dependable Distributed Protocols. The Computer Jouranl 38, 4 (1995). [5] Gloy, N., Young, C., Chen, J. B., and Smith, M. D. An Analysis of Dynamic Branch Prediction Schemes on System Workloads. In The Proceedings of the 23rd Annual International Symposium on Computer Architecture (May 1996). [6] Ingham, D. B., and Parrington, G. D. Delayline: A Wide-Area Network Emulation Tool. Computing Systems 7, 3 (1994). [7] Jacobson, V., Leres, C., and McCanne, S. The Tcpdump Manual Page. Lawrence Berkeley Laboratory, Berkeley, CA. [8] McCanne, S., and Jacobson, V. The BSD Packet Filter: A New Architecture for User-level Packet Capture. In Proceedings of the 1993 Winter USENIX Technical Conference (San Deigo, CA, January 1993). [9] Mills, D. L. Improved Algorithms for Synchronizing Computer Network Clocks. IEEE/ACM Transactions on Networking 3, 3 (June 1995). [10] Mummert, L. B., Ebling, M. R., and Satyanarayanan, M. Exploiting Weak Connectivity for Mobile File Access. In Proceedings of the 15th Symposium on Operating System Prinicples (Copper Mountain, CO, December 1995).Noble, et. al. Informational [Page 26]RFC 2041 Mobile Network Tracing October 1996 [11] Nelson, M. N., Welch, B. B., and Ousterhout, J. K. Caching in the Sprite Network File System. ACM Transactions on Computer Systems 6, 1 (February 1988). [12] Schilit, B., Adams, N., Gold, R., Tso, M., and Want, R. The PARCTAB Mobile Computing System. In Proceedings of the 4th IEEE Workshop on Workstation Operating Systems (Napa, CA, October 1993), pp. 34--39. [13] Uhlig, R., Nagle, D., Stanley, T., Mudge, T., Sechrest, S., and Brown, R. Design Tradeoffs for Software-Managed TLBs. ACM Transactions on Computer Systems 12, 3 (August 1994). [14] Want, R., Hopper, A., Falcao, V., and Gibbons, J. The Active Badge Location System. ACM Transactions on Information Systems 10, 1 (January 1992), 91--102.Noble, et. al. Informational [Page 27]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -