📄 rfc1794.txt
字号:
apart, moving that much data that frequently is seen as prohibitive. Also; the longer the propagation time between the primary and secondary, the larger the window in which circumstances can change - thus invalidating the secondary's information. It is generally thought that passing volatile information on to a secondary is fairly useless - if secondaries want accurate information, then they should calculate it themselves and not obtain it via zone transfers. This avoids the problem with secondaries losing contact with the primaries (but access to the targets of the volatile domain are still reachable), but the secondary has information that is growing stale. What is essentially necessary is a secondary (with no primary) which can calculate the necessary ordering of the RR data for itself (which also avoids the problem of different versions of domain servers predictively ordering RR information in different predictive fashions). For a volatile zone, there is no primary DNS agent, but rather a series of autonomous secondary agents. Each autonomous secondary agent is, of course, capable of calculating the ordering or content of the volatile RRs itself.Brisco [Page 4]RFC 1794 DNS Support for Load Balancing April 19955. Implementation With some help from Masataka Ohta (Tokyo Institute of Technology), I implemented modifications to BIND to permit the specification of the zone transfer program (zone transfer agent) for particular domains: transfer <domain-name> <program-name> Currently I define a separate subdomain that has a few hosts defined in it - all volatile information. The zone has a refresh rate of 300, and a minimum TTL of 300 indicated. The configuration file is indicated as "volatile.hosts". Every 300 seconds a program "doAxfer" is run to do the zone transfer. The program "doAxfer" reads the file "volatile.hosts.template" and the file "volatile.hosts.list". The addresses specified in volatile.hosts.list are rotated a random number of times, and then substituted (in order) into volatile.hosts.template to generate the file volatile.hosts. The program "doAxfer" then exits with a value of 1 - to indicate to the nameserver that the zone transfer was successful, and that the file should be read in, and the information distributed. This results in a host having multiple addresses, and the addresses are randomized every five minutes (300 seconds). Two bugs continue to plague us in this endeavor. BIND currently considers any TTL under 300 seconds as "irrational", and substitutes in the value of 300 instead. This greatly hampers the functionality of volatile zones. In the fastest of all cases - a 0 TTL - information would be used once, and then thrown away. Presumably the new RR information could be calculated every 5 seconds, and the RRs handed out with a TTL of 0. It must be considered that one limitation of the speed of a zone is going to be the ability of a machine to calculate new information fast enough. The other bug that also effects this is that, as with TTLs, BIND considers any zone refresh rate under 15 minutes to be similarly irrational. Obviously zone refresh rates of 15 minutes is unacceptable for this sort of applications. For a work-around, the current code sets these same hard-coded values to 60 seconds. Sixty seconds is still large enough to avoid any residual bugs associated with small timer values, but is also short enough to allow fast subzones to be of use. This version of BIND is currently in release within Rutgers University, operating in both "fast" and normal zones.Brisco [Page 5]RFC 1794 DNS Support for Load Balancing April 19956. Performance While the performance of fast zones isn't exactly stellar, it is not much more than the normal CPU loads induced by BIND. Testing was performed on a Sun Sparc-2 being used as a normal workstation, but no resolvers were using the name server - essentially the nameserver was idle. For a configuration with no fast subzones, BIND accrued 11 CPU seconds in 24 hours. For a configuration with one fast zone, six address records, and being refreshed every 300 seconds (5 minutes), BIND accrued 1 minute 4 seconds CPU time. For the same previous configuration, but being refreshed every sixty seconds, BIND accrued 5 minutes and 38 seconds of CPU time. As is no great surprise, the CPU load on the serving machine was linear to the frequency of the refresh time. The sixty second refresh configuration used approximately five times as much CPU time as did the 300 second refresh configuration. One can easily extrapolate that the overall CPU utilization would be linear to the number of zones and the frequency of the refresh period. All of this is based on a shell script that always indicated that a zone update was necessary, a more intelligent program should realize when the reordering of the RRs was unnecessary and avoid such periodic zone reloads.7. Acknowledgments Most of the ideas in this document are the results of conversations and proposals from many, many people - including, but not limited to, Robert Austein, Stuart Vance, Masataka Ohta, Marshall Rose, and the members of the IETF DNS Working Group.8. References [1] Mockapetris, P., "Domain Names - Implementation and Specification", STD 13, RFC 1035, USC/Information Sciences Institute, November 1987.Brisco [Page 6]RFC 1794 DNS Support for Load Balancing April 19959. Security Considerations Security issues are not discussed in this memo.10. Author's Address Thomas P. Brisco Associate Director for Network Operations Rutgers University Computing Services, Telecommunications Division Hill Center for the Mathematical Sciences Busch Campus Piscataway, New Jersey 08855-0879 USA Phone: +1-908-445-2351 EMail: brisco@rutgers.eduBrisco [Page 7]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -