📄 svr.m
字号:
function [nsv, beta, bias] = svr(X,Y,ker,C,loss,e)
%SVR Support Vector Regression
%
% Usage: [nsv beta bias] = svr(X,Y,ker,C,loss,e)
%
% Parameters: X - Training inputs
% Y - Training targets
% ker - kernel function
% C - upper bound (non-separable case)
% loss - loss function
% e - insensitivity
% nsv - number of support vectors
% beta - Difference of Lagrange Multipliers
% bias - bias term
%
% Author: Steve Gunn (srg@ecs.soton.ac.uk)
if (nargin < 3 | nargin > 6) % check correct number of arguments
help svr
else
fprintf('Support Vector Regressing ....\n')
fprintf('______________________________\n')
n = size(X,1);
if (nargin<6) e=0.0;, end
if (nargin<5) loss='eInsensitive';, end
if (nargin<4) C=Inf;, end
if (nargin<3) ker='linear';, end
% tolerance for Support Vector Detection
epsilon = svtol(C);
% Construct the Kernel matrix
fprintf('Constructing ...\n');
H = zeros(n,n);
for i=1:n
for j=1:n
H(i,j) = svkernel(ker,X(i,:),X(j,:));
end
end
% Set up the parameters for the Optimisation problem
switch lower(loss)
case 'einsensitive',
Hb = [H -H; -H H];
c = [(e*ones(n,1) - Y); (e*ones(n,1) + Y)];
vlb = zeros(2*n,1); % Set the bounds: alphas >= 0
vub = C*ones(2*n,1); % alphas <= C
x0 = zeros(2*n,1); % The starting point is [0 0 0 0]
neqcstr = nobias(ker); % Set the number of equality constraints (1 or 0)
if neqcstr
A = [ones(1,n) -ones(1,n)];, b = 0; % Set the constraint Ax = b
else
A = [];, b = [];
end
case 'quadratic',
Hb = H + eye(n)/(2*C);
c = -Y;
vlb = -1e30*ones(n,1);
vub = 1e30*ones(n,1);
x0 = zeros(n,1); % The starting point is [0 0 0 0]
neqcstr = nobias(ker); % Set the number of equality constraints (1 or 0)
if neqcstr
A = ones(1,n);, b = 0; % Set the constraint Ax = b
else
A = [];, b = [];
end
otherwise, disp('Error: Unknown Loss Function\n');
end
% Add small amount of zero order regularisation to
% avoid problems when Hessian is badly conditioned.
% Rank is always less than or equal to n.
% Note that adding to much reg will peturb solution
Hb = Hb+1e-10*eye(size(Hb));
% Solve the Optimisation Problem
fprintf('Optimising ...\n');
st = cputime;
[alpha lambda how] = qp(Hb, c, A, b, vlb, vub, x0, neqcstr);
fprintf('Execution time : %4.1f seconds\n',cputime - st);
fprintf('Status : %s\n',how);
switch lower(loss)
case 'einsensitive',
beta = alpha(1:n) - alpha(n+1:2*n);
case 'quadratic',
beta = alpha;
end
fprintf('|w0|^2 : %f\n',beta'*H*beta);
fprintf('Sum beta : %f\n',sum(beta));
% Compute the number of Support Vectors
svi = find( abs(beta) > epsilon );
nsv = length( svi );
fprintf('Support Vectors : %d (%3.1f%%)\n',nsv,100*nsv/n);
% Implicit bias, b0
bias = 0;
% Explicit bias, b0
if nobias(ker) ~= 0
switch lower(loss)
case 'einsensitive',
% find bias from average of support vectors with interpolation error e
% SVs with interpolation error e have alphas: 0 < alpha < C
svii = find( abs(beta) > epsilon & abs(beta) < (C - epsilon));
if length(svii) > 0
bias = (1/length(svii))*sum(Y(svii) - e*sign(beta(svii)) - H(svii,svi)*beta(svi));
else
fprintf('No support vectors with interpolation error e - cannot compute bias.\n');
bias = (max(Y)+min(Y))/2;
end
case 'quadratic',
bias = mean(Y - H*beta);
end
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -