📄 jidctint.c
字号:
/* * jidctint.c * * Copyright (C) 1991-1996, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains a slow-but-accurate integer implementation of the * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine * must also perform dequantization of the input coefficients. * * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT * on each row (or vice versa, but it's more convenient to emit a row at * a time). Direct algorithms are also available, but they are much more * complex and seem not to be any faster when reduced to code. * * This implementation is based on an algorithm described in * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. * The primary algorithm described there uses 11 multiplies and 29 adds. * We use their alternate method with 12 multiplies and 32 adds. * The advantage of this method is that no data path contains more than one * multiplication; this allows a very simple and accurate implementation in * scaled fixed-point arithmetic, with a minimal number of shifts. */ /*************************************************************************** * * This program has been developed by Intel Corporation. * You have Intel's permission to incorporate this code * into your product, royalty free. Intel has various * intellectual property rights which it may assert under * certain circumstances, such as if another manufacturer's * processor mis-identifies itself as being "GenuineIntel" * when the CPUID instruction is executed. * * Intel specifically disclaims all warranties, express or * implied, and all liability, including consequential and * other indirect damages, for the use of this code, * including liability for infringement of any proprietary * rights, and including the warranties of merchantability * and fitness for a particular purpose. Intel does not * assume any responsibility for any errors which may * appear in this code nor any responsibility to update it. * * * Other brands and names are the property of their respective * owners. * * Copyright (c) 1997, Intel Corporation. All rights reserved. ***************************************************************************/#define JPEG_INTERNALS#include "jinclude.h"#include "jpeglib.h"#include "jdct.h" /* Private declarations for DCT subsystem */#ifdef DCT_ISLOW_SUPPORTED/* * This module is specialized to the case DCTSIZE = 8. */#if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */#endif/* * The poop on this scaling stuff is as follows: * * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) * larger than the true IDCT outputs. The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm. The advantage of * this arrangement is that we save two multiplications per 1-D IDCT, * because the y0 and y4 inputs need not be divided by sqrt(N). * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic. We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants). After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output. This division can be done * cheaply as a right shift of CONST_BITS bits. We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision. These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling. (To scale up 12-bit sample data further, an * intermediate INT32 array would be needed.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis * shows that the values given below are the most effective. */#if BITS_IN_JSAMPLE == 8#define CONST_BITS 13#define PASS1_BITS 2#else#define CONST_BITS 13#define PASS1_BITS 1 /* lose a little precision to avoid overflow */#endif/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */#if CONST_BITS == 13#define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */#define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */#define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */#define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */#define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */#define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */#define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */#define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */#else#define FIX_0_298631336 FIX(0.298631336)#define FIX_0_390180644 FIX(0.390180644)#define FIX_0_541196100 FIX(0.541196100)#define FIX_0_765366865 FIX(0.765366865)#define FIX_0_899976223 FIX(0.899976223)#define FIX_1_175875602 FIX(1.175875602)#define FIX_1_501321110 FIX(1.501321110)#define FIX_1_847759065 FIX(1.847759065)#define FIX_1_961570560 FIX(1.961570560)#define FIX_2_053119869 FIX(2.053119869)#define FIX_2_562915447 FIX(2.562915447)#define FIX_3_072711026 FIX(3.072711026)#endif/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */#if BITS_IN_JSAMPLE == 8#define MULTIPLY(var,const) MULTIPLY16C16(var,const)#else#define MULTIPLY(var,const) ((var) * (const))#endif/* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce an int result. In this module, both inputs and result * are 16 bits or less, so either int or short multiply will work. */#define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))/* * Perform dequantization and inverse DCT on one block of coefficients. */#define __int64 unsigned long long static const __int64 fix_029_n089n196 = 0x098ea46e098ea46eLL; static const __int64 fix_n196_n089 = 0xc13be333c13be333LL; static const __int64 fix_205_n256n039 = 0x41b3a18141b3a181LL; static const __int64 fix_n039_n256 = 0xf384adfdf384adfdLL; static const __int64 fix_307n256_n196 = 0x1051c13b1051c13bLL; static const __int64 fix_n256_n196 = 0xadfdc13badfdc13bLL; static const __int64 fix_150_n089n039 = 0x300bd6b7300bd6b7LL; static const __int64 fix_n039_n089 = 0xf384e333f384e333LL; static const __int64 fix_117_117 = 0x25a125a125a125a1LL; static const __int64 fix_054_054p076 = 0x115129cf115129cfLL; static const __int64 fix_054n184_054 = 0xd6301151d6301151LL; static const __int64 fix_054n184 = 0xd630d630d630d630LL; static const __int64 fix_054 = 0x1151115111511151LL; static const __int64 fix_054p076 = 0x29cf29cf29cf29cfLL; static const __int64 fix_n196p307n256 = 0xd18cd18cd18cd18cLL; static const __int64 fix_n089n039p150 = 0x06c206c206c206c2LL; static const __int64 fix_n256 = 0xadfdadfdadfdadfdLL; static const __int64 fix_n039 = 0xf384f384f384f384LL; static const __int64 fix_n256n039p205 = 0xe334e334e334e334LL; static const __int64 fix_n196 = 0xc13bc13bc13bc13bLL; static const __int64 fix_n089 = 0xe333e333e333e333LL; static const __int64 fix_n089n196p029 = 0xadfcadfcadfcadfcLL; static const __int64 const_0x2xx8 = 0x0000010000000100LL; static const __int64 const_0x0808 = 0x0808080808080808LL;__inline void domidct8x8llmW(short *inptr, short *quantptr, int *wsptr, JSAMPARRAY outptr, int output_col);GLOBAL(void)jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col){ int workspace[DCTSIZE2+4]; /* buffers data between passes */ domidct8x8llmW(coef_block, compptr->dct_table, workspace, output_buf, output_col);} __inline void domidct8x8llmW(short *inptr, short *quantptr, int *wsptr, JSAMPARRAY outptr, int output_col){#if defined(HAVE_MMX_INTEL_MNEMONICS) __asm{ mov edi, quantptr mov ebx, inptr mov esi, wsptr add esi, 0x07 ;align wsptr to qword and esi, 0xfffffff8 ;align wsptr to qword mov eax, esi /* Pass 1. */ movq mm0, [ebx + 8*4] ;p1(1,0) pmullw mm0, [edi + 8*4] ;p1(1,1) movq mm1, [ebx + 8*12] ;p1(2,0) pmullw mm1, [edi + 8*12] ;p1(2,1) movq mm6, [ebx + 8*0] ;p1(5,0) pmullw mm6, [edi + 8*0] ;p1(5,1) movq mm2, mm0 ;p1(3,0) movq mm7, [ebx + 8*8] ;p1(6,0) punpcklwd mm0, mm1 ;p1(3,1) pmullw mm7, [edi + 8*8] ;p1(6,1) movq mm4, mm0 ;p1(3,2) punpckhwd mm2, mm1 ;p1(3,4) pmaddwd mm0, fix_054n184_054 ;p1(3,3) movq mm5, mm2 ;p1(3,5) pmaddwd mm2, fix_054n184_054 ;p1(3,6) pxor mm1, mm1 ;p1(7,0) pmaddwd mm4, fix_054_054p076 ;p1(4,0) punpcklwd mm1, mm6 ;p1(7,1) pmaddwd mm5, fix_054_054p076 ;p1(4,1) psrad mm1, 3 ;p1(7,2) pxor mm3, mm3 ;p1(7,3) punpcklwd mm3, mm7 ;p1(7,4) psrad mm3, 3 ;p1(7,5) paddd mm1, mm3 ;p1(7,6) movq mm3, mm1 ;p1(7,7) paddd mm1, mm4 ;p1(7,8) psubd mm3, mm4 ;p1(7,9) movq [esi + 8*16], mm1 ;p1(7,10) pxor mm4, mm4 ;p1(7,12) movq [esi + 8*22], mm3 ;p1(7,11) punpckhwd mm4, mm6 ;p1(7,13) psrad mm4, 3 ;p1(7,14) pxor mm1, mm1 ;p1(7,15) punpckhwd mm1, mm7 ;p1(7,16) psrad mm1, 3 ;p1(7,17) paddd mm4, mm1 ;p1(7,18) movq mm3, mm4 ;p1(7,19) pxor mm1, mm1 ;p1(8,0) paddd mm3, mm5 ;p1(7,20) punpcklwd mm1, mm6 ;p1(8,1) psubd mm4, mm5 ;p1(7,21) psrad mm1, 3 ;p1(8,2) movq [esi + 8*17], mm3 ;p1(7,22) pxor mm5, mm5 ;p1(8,3) movq [esi + 8*23], mm4 ;p1(7,23) punpcklwd mm5, mm7 ;p1(8,4) psrad mm5, 3 ;p1(8,5) pxor mm4, mm4 ;p1(8,12) psubd mm1, mm5 ;p1(8,6) punpckhwd mm4, mm6 ;p1(8,13) movq mm3, mm1 ;p1(8,7) psrad mm4, 3 ;p1(8,14) paddd mm1, mm0 ;p1(8,8) pxor mm5, mm5 ;p1(8,15) psubd mm3, mm0 ;p1(8,9) movq mm0, [ebx + 8*14] ;p1(9,0) punpckhwd mm5, mm7 ;p1(8,16) pmullw mm0, [edi + 8*14] ;p1(9,1) movq [esi + 8*18], mm1 ;p1(8,10) psrad mm5, 3 ;p1(8,17) movq [esi + 8*20], mm3 ;p1(8,11) psubd mm4, mm5 ;p1(8,18) movq mm3, mm4 ;p1(8,19) movq mm1, [ebx + 8*6] ;p1(10,0) paddd mm3, mm2 ;p1(8,20) pmullw mm1, [edi + 8*6] ;p1(10,1) psubd mm4, mm2 ;p1(8,21) movq mm5, mm0 ;p1(11,1) movq [esi + 8*21], mm4 ;p1(8,23) movq [esi + 8*19], mm3 ;p1(8,22) movq mm4, mm0 ;p1(11,0) punpcklwd mm4, mm1 ;p1(11,2) movq mm2, [ebx + 8*10] ;p1(12,0) punpckhwd mm5, mm1 ;p1(11,4) pmullw mm2, [edi + 8*10] ;p1(12,1) movq mm3, [ebx + 8*2] ;p1(13,0) pmullw mm3, [edi + 8*2] ;p1(13,1) movq mm6, mm2 ;p1(14,0) pmaddwd mm4, fix_117_117 ;p1(11,3) movq mm7, mm2 ;p1(14,1) pmaddwd mm5, fix_117_117 ;p1(11,5) punpcklwd mm6, mm3 ;p1(14,2) pmaddwd mm6, fix_117_117 ;p1(14,3) punpckhwd mm7, mm3 ;p1(14,4) pmaddwd mm7, fix_117_117 ;p1(14,5) paddd mm4, mm6 ;p1(15,0) paddd mm5, mm7 ;p1(15,1) movq [esi+8*24], mm4 ;p1(15,2) movq [esi+8*25], mm5 ;p1(15,3) movq mm6, mm0 ;p1(16,0) movq mm7, mm3 ;p1(16,3) punpcklwd mm6, mm2 ;p1(16,1) punpcklwd mm7, mm3 ;p1(16,4) pmaddwd mm6, fix_n039_n089 ;p1(16,2) pmaddwd mm7, fix_150_n089n039 ;p1(16,5) movq mm4, mm0 ;p1(16,12) paddd mm6, [esi+8*24] ;p1(16,6) punpckhwd mm4, mm2 ;p1(16,13) paddd mm6, mm7 ;p1(16,7) pmaddwd mm4, fix_n039_n089 ;p1(16,14) movq mm7, mm6 ;p1(16,8) paddd mm4, [esi+8*25] ;p1(16,18) movq mm5, mm3 ;p1(16,15) paddd mm6, [esi + 8*16] ;p1(16,9) punpckhwd mm5, mm3 ;p1(16,16) paddd mm6, const_0x2xx8 ;p1(16,10) psrad mm6, 9 ;p1(16,11) pmaddwd mm5, fix_150_n089n039 ;p1(16,17) paddd mm4, mm5 ;p1(16,19) movq mm5, mm4 ;p1(16,20) paddd mm4, [esi + 8*17] ;p1(16,21) paddd mm4, const_0x2xx8 ;p1(16,22) psrad mm4, 9 ;p1(16,23) packssdw mm6, mm4 ;p1(16,24) movq [esi + 8*0], mm6 ;p1(16,25) movq mm4, [esi + 8*16] ;p1(16,26) psubd mm4, mm7 ;p1(16,27) movq mm6, [esi + 8*17] ;p1(16,30) paddd mm4, const_0x2xx8 ;p1(16,28) movq mm7, mm1 ;p1(17,3) psrad mm4, 9 ;p1(16,29) psubd mm6, mm5 ;p1(16,31) paddd mm6, const_0x2xx8 ;p1(16,32) punpcklwd mm7, mm1 ;p1(17,4) pmaddwd mm7, fix_307n256_n196 ;p1(17,5) psrad mm6, 9 ;p1(16,33) packssdw mm4, mm6 ;p1(16,34) movq [esi + 8*14], mm4 ;p1(16,35) movq mm6, mm0 ;p1(17,0) movq mm4, mm0 ;p1(17,12) punpcklwd mm6, mm2 ;p1(17,1) punpckhwd mm4, mm2 ;p1(17,13) pmaddwd mm6, fix_n256_n196 ;p1(17,2) movq mm5, mm1 ;p1(17,15) paddd mm6, [esi+8*24] ;p1(17,6) punpckhwd mm5, mm1 ;p1(17,16) paddd mm6, mm7 ;p1(17,7)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -