📄 vga_sys.v
字号:
end
//control_5, which is an e_mux
assign p5_full_5 = ((read & !write) == 0)? full_4 :
full_6;
//control_reg_5, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
full_5 <= 0;
else if (clear_fifo | (read ^ write) | (write & !full_0))
if (clear_fifo)
full_5 <= 0;
else
full_5 <= p5_full_5;
end
//data_4, which is an e_mux
assign p4_stage_4 = ((full_5 & ~clear_fifo) == 0)? data_in :
stage_5;
//data_reg_4, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
stage_4 <= 0;
else if (clear_fifo | sync_reset | read | (write & !full_4))
if (sync_reset & full_4 & !((full_5 == 0) & read & write))
stage_4 <= 0;
else
stage_4 <= p4_stage_4;
end
//control_4, which is an e_mux
assign p4_full_4 = ((read & !write) == 0)? full_3 :
full_5;
//control_reg_4, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
full_4 <= 0;
else if (clear_fifo | (read ^ write) | (write & !full_0))
if (clear_fifo)
full_4 <= 0;
else
full_4 <= p4_full_4;
end
//data_3, which is an e_mux
assign p3_stage_3 = ((full_4 & ~clear_fifo) == 0)? data_in :
stage_4;
//data_reg_3, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
stage_3 <= 0;
else if (clear_fifo | sync_reset | read | (write & !full_3))
if (sync_reset & full_3 & !((full_4 == 0) & read & write))
stage_3 <= 0;
else
stage_3 <= p3_stage_3;
end
//control_3, which is an e_mux
assign p3_full_3 = ((read & !write) == 0)? full_2 :
full_4;
//control_reg_3, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
full_3 <= 0;
else if (clear_fifo | (read ^ write) | (write & !full_0))
if (clear_fifo)
full_3 <= 0;
else
full_3 <= p3_full_3;
end
//data_2, which is an e_mux
assign p2_stage_2 = ((full_3 & ~clear_fifo) == 0)? data_in :
stage_3;
//data_reg_2, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
stage_2 <= 0;
else if (clear_fifo | sync_reset | read | (write & !full_2))
if (sync_reset & full_2 & !((full_3 == 0) & read & write))
stage_2 <= 0;
else
stage_2 <= p2_stage_2;
end
//control_2, which is an e_mux
assign p2_full_2 = ((read & !write) == 0)? full_1 :
full_3;
//control_reg_2, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
full_2 <= 0;
else if (clear_fifo | (read ^ write) | (write & !full_0))
if (clear_fifo)
full_2 <= 0;
else
full_2 <= p2_full_2;
end
//data_1, which is an e_mux
assign p1_stage_1 = ((full_2 & ~clear_fifo) == 0)? data_in :
stage_2;
//data_reg_1, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
stage_1 <= 0;
else if (clear_fifo | sync_reset | read | (write & !full_1))
if (sync_reset & full_1 & !((full_2 == 0) & read & write))
stage_1 <= 0;
else
stage_1 <= p1_stage_1;
end
//control_1, which is an e_mux
assign p1_full_1 = ((read & !write) == 0)? full_0 :
full_2;
//control_reg_1, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
full_1 <= 0;
else if (clear_fifo | (read ^ write) | (write & !full_0))
if (clear_fifo)
full_1 <= 0;
else
full_1 <= p1_full_1;
end
//data_0, which is an e_mux
assign p0_stage_0 = ((full_1 & ~clear_fifo) == 0)? data_in :
stage_1;
//data_reg_0, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
stage_0 <= 0;
else if (clear_fifo | sync_reset | read | (write & !full_0))
if (sync_reset & full_0 & !((full_1 == 0) & read & write))
stage_0 <= 0;
else
stage_0 <= p0_stage_0;
end
//control_0, which is an e_mux
assign p0_full_0 = ((read & !write) == 0)? 1 :
full_1;
//control_reg_0, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
full_0 <= 0;
else if (clear_fifo | (read ^ write) | (write & !full_0))
if (clear_fifo & ~write)
full_0 <= 0;
else
full_0 <= p0_full_0;
end
assign one_count_plus_one = how_many_ones + 1;
assign one_count_minus_one = how_many_ones - 1;
//updated_one_count, which is an e_mux
assign updated_one_count = ((((clear_fifo | sync_reset) & !write)))? 0 :
((((clear_fifo | sync_reset) & write)))? |data_in :
((read & (|data_in) & write & (|stage_0)))? how_many_ones :
((write & (|data_in)))? one_count_plus_one :
((read & (|stage_0)))? one_count_minus_one :
how_many_ones;
//counts how many ones in the data pipeline, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
how_many_ones <= 0;
else if (clear_fifo | sync_reset | read | write)
how_many_ones <= updated_one_count;
end
//this fifo contains ones in the data pipeline, which is an e_register
always @(posedge clk or negedge reset_n)
begin
if (reset_n == 0)
fifo_contains_ones_n <= 1;
else if (clear_fifo | sync_reset | read | write)
fifo_contains_ones_n <= ~(|updated_one_count);
end
endmodule
// turn off superfluous verilog processor warnings
// altera message_level Level1
// altera message_off 10034 10035 10036 10037 10230 10240 10030
module burst_0_upstream_arbitrator (
// inputs:
burst_0_upstream_readdata,
burst_0_upstream_readdatavalid,
burst_0_upstream_waitrequest,
clk,
freedev_vga_inst_avalon_master_address_to_slave,
freedev_vga_inst_avalon_master_burstcount,
freedev_vga_inst_avalon_master_byteenable,
freedev_vga_inst_avalon_master_dbs_address,
freedev_vga_inst_avalon_master_dbs_write_16,
freedev_vga_inst_avalon_master_latency_counter,
freedev_vga_inst_avalon_master_read,
freedev_vga_inst_avalon_master_write,
reset_n,
// outputs:
burst_0_upstream_address,
burst_0_upstream_burstcount,
burst_0_upstream_byteaddress,
burst_0_upstream_byteenable,
burst_0_upstream_read,
burst_0_upstream_readdata_from_sa,
burst_0_upstream_waitrequest_from_sa,
burst_0_upstream_write,
burst_0_upstream_writedata,
d1_burst_0_upstream_end_xfer,
freedev_vga_inst_avalon_master_byteenable_burst_0_upstream,
freedev_vga_inst_avalon_master_granted_burst_0_upstream,
freedev_vga_inst_avalon_master_qualified_request_burst_0_upstream,
freedev_vga_inst_avalon_master_read_data_valid_burst_0_upstream,
freedev_vga_inst_avalon_master_read_data_valid_burst_0_upstream_shift_register,
freedev_vga_inst_avalon_master_requests_burst_0_upstream
)
/* synthesis auto_dissolve = "FALSE" */ ;
output [ 25: 0] burst_0_upstream_address;
output [ 7: 0] burst_0_upstream_burstcount;
output [ 26: 0] burst_0_upstream_byteaddress;
output [ 1: 0] burst_0_upstream_byteenable;
output burst_0_upstream_read;
output [ 15: 0] burst_0_upstream_readdata_from_sa;
output burst_0_upstream_waitrequest_from_sa;
output burst_0_upstream_write;
output [ 15: 0] burst_0_upstream_writedata;
output d1_burst_0_upstream_end_xfer;
output [ 1: 0] freedev_vga_inst_avalon_master_byteenable_burst_0_upstream;
output freedev_vga_inst_avalon_master_granted_burst_0_upstream;
output freedev_vga_inst_avalon_master_qualified_request_burst_0_upstream;
output freedev_vga_inst_avalon_master_read_data_valid_burst_0_upstream;
output freedev_vga_inst_avalon_master_read_data_valid_burst_0_upstream_shift_register;
output freedev_vga_inst_avalon_master_requests_burst_0_upstream;
input [ 15: 0] burst_0_upstream_readdata;
input burst_0_upstream_readdatavalid;
input burst_0_upstream_waitrequest;
input clk;
input [ 31: 0] freedev_vga_inst_avalon_master_address_to_slave;
input [ 7: 0] freedev_vga_inst_avalon_master_burstcount;
input [ 3: 0] freedev_vga_inst_avalon_master_byteenable;
input [ 1: 0] freedev_vga_inst_avalon_master_dbs_address;
input [ 15: 0] freedev_vga_inst_avalon_master_dbs_write_16;
input freedev_vga_inst_avalon_master_latency_counter;
input freedev_vga_inst_avalon_master_read;
input freedev_vga_inst_avalon_master_write;
input reset_n;
wire [ 25: 0] burst_0_upstream_address;
wire burst_0_upstream_allgrants;
wire burst_0_upstream_allow_new_arb_cycle;
wire burst_0_upstream_any_bursting_master_saved_grant;
wire burst_0_upstream_any_continuerequest;
wire burst_0_upstream_arb_counter_enable;
reg [ 9: 0] burst_0_upstream_arb_share_counter;
wire [ 9: 0] burst_0_upstream_arb_share_counter_next_value;
wire [ 9: 0] burst_0_upstream_arb_share_set_values;
reg [ 6: 0] burst_0_upstream_bbt_burstcounter;
wire burst_0_upstream_beginbursttransfer_internal;
wire burst_0_upstream_begins_xfer;
wire [ 7: 0] burst_0_upstream_burstcount;
wire burst_0_upstream_burstcount_fifo_empty;
wire [ 26: 0] burst_0_upstream_byteaddress;
wire [ 1: 0] burst_0_upstream_byteenable;
reg [ 8: 0] burst_0_upstream_current_burst;
wire [ 8: 0] burst_0_upstream_current_burst_minus_one;
wire burst_0_upstream_end_xfer;
wire burst_0_upstream_firsttransfer;
wire burst_0_upstream_grant_vector;
wire burst_0_upstream_in_a_read_cycle;
wire burst_0_upstream_in_a_write_cycle;
reg burst_0_upstream_load_fifo;
wire burst_0_upstream_master_qreq_vector;
wire burst_0_upstream_move_on_to_next_transaction;
wire [ 6: 0] burst_0_upstream_next_bbt_burstcount;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -