📄 rtrl.m
字号:
function net = rtrl(net,cycles,sample,alpha)% net = rtrl(net,cycles,sample,alpha)%% net: produced by rtrlinit% cycles: number of cycles per example. The partial derivative is% accumulated for this many cycles between each weight update.% sample: vector of inputs and target% alpha: learning rate% by Chuck Anderson (2001) www.cs.colostate.edu/~andersonnet.alpha = alpha;ni = net.ni;no = net.no;nu = net.nu;nic = ni+1;for cycle = 1:cycles net.u = [net.y; sample(1:ni)'; 1]; net.y = activation(net, net.w * net.u ); dyr = repmat(actderiv(net,net.y),1,nu); for i = 1:nic+nu net.p(:,:,i) = dyr .* (net.w(:,1:nu) * net.p(:,:,i) + ... diag(ones(1,nu)*net.u(i))); end net.output(cycle,:) = net.y';end % cycle loop net.dw(:,:) = 0;for j = 1:no net.error = sample(j+ni) - net.y(j); net.dw = net.dw + net.error * shiftdim(net.p(j,:,:),1);endnet.w = net.w + alpha * net.dw;%----------------------------------------------------------------------function y = activation(net,s)if net.sig1tanh2 == 1 y = 1 ./ (1 + exp(-s));else y = tanh(s);end%----------------------------------------------------------------------function dy = actderiv(net,y)if net.sig1tanh2 == 1 dy = y .* (1 - y);else dy = 1 - y.^2;end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -