📄 sarsplit.m
字号:
function [k,mu,M,aSplit,rSplit] = sarSplit(aSplit,rSplit,k,mu,M,x,y,t,bFunction,criterion,sigStar,walk);% PURPOSE : Performs the split move of the reversible jump MCMC simulated annealing.% INPUTS : - aSplit: Number of times the split move has been accepted.% - rSplit: Number of times the split move has been rejected.% - k : Number of basis functions.% - mu : Basis functions centres.% - M : Regressors matrix.% - x : Input data.% - y : Target data.% - t : Current time step.% - bFunction: Type of basis function.% - criterion: Model selection criterion (MDL or AIC).% - sigStar: Split/merge move parameter.% - walk: Parameter defining the compact set from which mu is sampled.% AUTHOR : Nando de Freitas - Thanks for the acknowledgement :-)% DATE : 21-05-99if nargin < 11, error('Not enough input arguments.'); end[N,d] = size(x); % N = number of data, d = dimension of x.[N,c] = size(y); % c = dimension of y, i.e. number of outputs.insideSplit=1;uB=rand(1);% INITIALISE H AND P MATRICES:% ===========================invH=zeros(k(t)+1+d,k(t)+1+d,c);P=zeros(N,N,c);invHproposal=zeros(k(t)+2+d,k(t)+2+d,c);Pproposal=zeros(N,N,c);for i=1:c, invH(:,:,i) = M'*M; P(:,:,i) = eye(N) - M*inv(invH(:,:,i))*M';end;% PROPOSE A BASIS FUNCTION TO BE SPLIT:% ====================================position = unidrnd(length(mu{t}(:,1)),1,1);proposal = mu{t}(position,:);uu = rand(size(proposal));mu1 = proposal - uu*sigStar;mu2 = proposal + uu*sigStar;% CONSTRAIN RANDOM WALK:% =====================for i=1:d, mu1(:,i) = min(mu1(:,i),max(x(:,i))+walk(i)); mu1(:,i) = max(mu1(:,i),min(x(:,i))-walk(i)); mu2(:,i) = min(mu2(:,i),max(x(:,i))+walk(i)); mu2(:,i) = max(mu2(:,i),min(x(:,i))-walk(i));end% Reduce the size of M by 1:proposalPos= d+1+position;if (proposalPos==d+1+k(t)), Mproposal = [M(:,1:proposalPos-1)]; else Mproposal = [M(:,1:proposalPos-1) M(:,proposalPos+1:k(t)+d+1)]; end;% Add the new split components to m:Mproposal = [Mproposal feval(bFunction,mu1,x) feval(bFunction,mu2,x)];for i=1:c, invHproposal(:,:,i) = (Mproposal'*Mproposal); Pproposal(:,:,i) = eye(N) - Mproposal*inv(invHproposal(:,:,i))*Mproposal'; end;% COMPUTE THE ACCEPTANCE RATION:% =============================Jacobian = sigStar;small = 0; % To avoid numerical problems.ratio= Jacobian*inv(k(t)+1) * k(t) * exp(-criterion) * ((y(:,1)'*P(:,:,1)*y(:,1)+small)/(y(:,1)'*Pproposal(:,:,1)*y(:,1)+small))^(N/2);for i=2:c, ratio= ratio * ((y(:,i)'*P(:,:,i)*y(:,i)+small)/(y(:,i)'*Pproposal(:,:,i)*y(:,i)+small))^(N/2); end;acceptance = min(1,ratio); % PERFORM DISTANCE TEST TO ENSURE REVERSIBILITY:% =============================================dist1 = zeros(k(t),1);dist2 = norm(mu1-mu2); violation =0;for i=1:k(t), if i== position, dist1(i) = inf; else dist1(i)=norm(mu1-mu{t}(i,:)); % Euclidean distance; end; if dist1(i)<dist2 % Don't accept. violation=1; acceptance = 0; end;end; % APPLY METROPOLIS-HASTINGS STEP:% ==============================if (uB<acceptance), previousMu = mu{t}; if (proposalPos==(1+d+1)), muTrunc = [previousMu(2:k(t),:)]; elseif (proposalPos==(1+d+k(t))), muTrunc = [previousMu(1:k(t)-1,:)]; else muTrunc = [previousMu(1:proposalPos-1-d-1,:); previousMu(proposalPos-d-1+1:k(t),:)]; end; mu{t+1} = [muTrunc; mu1; mu2]; k(t+1) = k(t)+1; M=Mproposal; aSplit=aSplit+1;else mu{t+1} = mu{t}; k(t+1) = k(t); rSplit=rSplit+1; M=M;end;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -