📄 ssx31b_cipher_digest.c
字号:
const u8 *iv){ int err; unsigned char ucOpt=0x0; /*0x000:crypto operation only and en-do*/ int saNum; unsigned long OutDatLen; saNum=ssx31b_ctx_mapping_getsanum(cx); if(saNum<0) return -1; err=ssx31b_crypto_perform(ucOpt, iv, cx->ci->blocksize, saNum, in, size, out, &OutDatLen); if(err!=0) return -1; return 0;}static int aes_ecb_decrypt(struct cipher_context *cx, const u8 *in, u8 *out, int size, int atomic, const u8 *iv){ int err; unsigned char ucOpt=0x01; /*0x001:crypto operation only and de-do*/ int saNum; unsigned long OutDatLen; saNum=ssx31b_ctx_mapping_getsanum(cx); if(saNum<0) return -1; err=ssx31b_crypto_perform(ucOpt, iv, cx->ci->blocksize, saNum, in, size, out, &OutDatLen); if(err!=0) return -1; return 0;}/*===CBC====*/static int aes_cbc_encrypt(struct cipher_context *cx, const u8 *in, u8 *out, int size, int atomic, const u8 *iv){ //printk("aes_cbc_encrypt: size=%d !\n",size); return aes_ecb_encrypt(cx, in, out, size, atomic, iv); }static int aes_cbc_decrypt(struct cipher_context *cx, const u8 *in, u8 *out, int size, int atomic, const u8 *iv){ //printk("aes_cbc_decrypt: size=%d !\n",size); return aes_ecb_decrypt( cx, in, out, size, atomic, iv);}#define SSX31B_CIPHER_AES_ID aes#define SSX31B_CIPHER_AES_STR "aes"#define SSX31B_CIPHER_AES_BLOCKSIZE 128#define SSX31B_CIPHER_AES_KEY_SIZE_MASK CIPHER_KEYSIZE_128 | CIPHER_KEYSIZE_192 | CIPHER_KEYSIZE_256#define SSX31B_CIPHER_AES_KEY_SCHEDULE_SIZE (3*32*sizeof(u32))/*----scb2-------------------*/static int scb2_ecb_set_key(struct cipher_context *cx, const unsigned char *key, int keybytes, int atomic){ //u32 *method; int status; // unsigned char lkey[24]; //unsigned char n1, n2; //method=(u32 *)cx->keyinfo;unsigned short usOpt;unsigned char* lkey=(unsigned char*)(cx->keyinfo); int saNum; /* asign keybits based on keylength */ if (keybytes == 16) { memcpy(lkey,key,keybytes); } else return -EINVAL; cx->key_length = keybytes;#if 0 /* set the correct parity bit for each byte in the key*/ for(i=0; i<24; i++){ n1 = lkey[i] & 0xfe; n2 = n1 ^ (n1 >> 4); n2 ^= (n2 >> 2); n2 ^= (n2 >> 1); lkey[i] = n1 | (~n2 & 0x01); } /* check for degenerate keys */ if(keybytes > 8 && (memcmp(lkey,lkey+8,8)==0 || memcmp(lkey+8,lkey+16,8)==0)) return -2; if((status = des_part_set_key(method, lkey)) != 0) return status; if((status = des_part_set_key(method+32, lkey+8)) != 0) return status; if((status = des_part_set_key(method+64, lkey+16)) != 0) return status;#endif saNum=ssx31b_ctx_mapping_getsanum(cx); if(saNum<0) return -1; usOpt=20; /*000 0101 00: ?? scb2 ECB*/ status=ssx31b_sa_register( usOpt, lkey, NULL, saNum); if(status<0) return -1; return 0;}static int scb2_cbc_set_key(struct cipher_context *cx, const unsigned char *key, int keybytes, int atomic){ int status;unsigned short usOpt;unsigned char* lkey=(unsigned char*)(cx->keyinfo); int saNum; /* asign keybits based on keylength */ if (keybytes == 16) { memcpy(lkey,key,keybytes); } else return -EINVAL; cx->key_length = keybytes; saNum=ssx31b_ctx_mapping_getsanum(cx); if(saNum<0) return -1; usOpt=21; /*000 0101 01: ?? scb2 CBC*/ status=ssx31b_sa_register( usOpt, (unsigned long *)lkey, NULL, saNum); if(status<0) return -1; return 0;}static int scb2_ecb_encrypt(struct cipher_context *cx, const u8 *in, u8 *out, int size, int atomic, const u8 *iv){ int err; unsigned char ucOpt=0x0; /*0x000:crypto operation only and en-do*/ int saNum; unsigned long OutDatLen; saNum=ssx31b_ctx_mapping_getsanum(cx); if(saNum<0) return -1; err=ssx31b_crypto_perform(ucOpt, iv, cx->ci->blocksize, saNum, in, size, out, &OutDatLen); if(err!=0) return -1; return 0;}static int scb2_ecb_decrypt(struct cipher_context *cx, const u8 *in, u8 *out, int size, int atomic, const u8 *iv){ int err; unsigned char ucOpt=0x01; /*0x001:crypto operation only and de-do*/ int saNum; unsigned long OutDatLen; saNum=ssx31b_ctx_mapping_getsanum(cx); if(saNum<0) return -1; err=ssx31b_crypto_perform(ucOpt, iv, cx->ci->blocksize, saNum, in, size, out, &OutDatLen); if(err!=0) return -1; return 0;}/*===CBC====*/static int scb2_cbc_encrypt(struct cipher_context *cx, const u8 *in, u8 *out, int size, int atomic, const u8 *iv){ return scb2_ecb_encrypt(cx, in, out, size, atomic, iv); }static int scb2_cbc_decrypt(struct cipher_context *cx, const u8 *in, u8 *out, int size, int atomic, const u8 *iv){ return scb2_ecb_decrypt( cx, in, out, size, atomic, iv);}#define SSX31B_CIPHER_SCB2_ID scb2#define SSX31B_CIPHER_SCB2_STR "scb2"#define SSX31B_CIPHER_SCB2_BLOCKSIZE 128#define SSX31B_CIPHER_SCB2_KEY_SIZE_MASK CIPHER_KEYSIZE_128#define SSX31B_CIPHER_SCB2_KEY_SCHEDULE_SIZE (3*32*sizeof(u32))static struct cipher_context *ssx31b_default_realloc_cipher_context(struct cipher_context *old_cx, struct cipher_implementation *ci, int max_key_len){ struct cipher_context *cx; int i; /* Default ciphers need the same amount of memory for any key size *///printk("ssx31b_crypto: realloc_cipher_context!\n"); if (old_cx) { return old_cx; } cx = kmalloc(sizeof(struct cipher_context) + ci->key_schedule_size, GFP_KERNEL); if (!cx) { return NULL; } memset(cx,0,sizeof(struct cipher_context) + ci->key_schedule_size); for (i=0;i<ci->ivsize;i++) cx->iv[i]=(i+1)&0xff; /*default IV*/ cx->ci = ci; cx->keyinfo = (void *)((char *)cx)+sizeof(struct cipher_context); (void) max_key_len; /* Make gcc happy */ if(ssx31b_ctx_mapping_set(cx)<0){ kfree(cx); return NULL; } return cx;}static void ssx31b_default_wipe_context(struct cipher_context *cx){ struct cipher_implementation *ci = cx->ci; u32 *keyinfo = cx->keyinfo; memset(cx->keyinfo, 0, ci->key_schedule_size); memset(cx, 0, sizeof(struct cipher_context)); cx->ci = ci; cx->keyinfo = keyinfo; }static void ssx31b_default_free_cipher_context(struct cipher_context *cx){ if(cx==NULL) return; ssx31b_ctx_mapping_clear(cx); kfree(cx); return;}/*======================================================*//* digest *//*======================================================*//*MD5*/typedef struct { u64 byte_count; u32 hash[4]; /* hash buf */ u32 in[16]; /* 64-byte inbuffer */} md5_ctx_t;typedef struct { u64 count; u32 state[5]; u8 buffer[64];} sha1_ctx_t;#ifdef NOT_ONLY_HMAC/* The four core functions - F1 is optimized somewhat *//* #define F1(x, y, z) (x & y | ~x & z) */#define F1(x, y, z) (z ^ (x & (y ^ z)))#define F2(x, y, z) F1(z, x, y)#define F3(x, y, z) (x ^ y ^ z)#define F4(x, y, z) (y ^ (x | ~z))/* This is the central step in the MD5 algorithm. */#define MD5STEP(f,w,x,y,z,in,s) \ (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)/* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. MD5Update blocks * the data and converts bytes into longwords for this routine. */static inline voidmd5_transform (u32 hash[4], u32 const in[16]){ register u32 a, b, c, d; a = hash[0]; b = hash[1]; c = hash[2]; d = hash[3]; MD5STEP (F1, a, b, c, d, in[0] + 0xd76aa478, 7); MD5STEP (F1, d, a, b, c, in[1] + 0xe8c7b756, 12); MD5STEP (F1, c, d, a, b, in[2] + 0x242070db, 17); MD5STEP (F1, b, c, d, a, in[3] + 0xc1bdceee, 22); MD5STEP (F1, a, b, c, d, in[4] + 0xf57c0faf, 7); MD5STEP (F1, d, a, b, c, in[5] + 0x4787c62a, 12); MD5STEP (F1, c, d, a, b, in[6] + 0xa8304613, 17); MD5STEP (F1, b, c, d, a, in[7] + 0xfd469501, 22); MD5STEP (F1, a, b, c, d, in[8] + 0x698098d8, 7); MD5STEP (F1, d, a, b, c, in[9] + 0x8b44f7af, 12); MD5STEP (F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP (F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP (F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP (F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP (F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP (F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP (F2, a, b, c, d, in[1] + 0xf61e2562, 5); MD5STEP (F2, d, a, b, c, in[6] + 0xc040b340, 9); MD5STEP (F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP (F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); MD5STEP (F2, a, b, c, d, in[5] + 0xd62f105d, 5); MD5STEP (F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP (F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP (F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); MD5STEP (F2, a, b, c, d, in[9] + 0x21e1cde6, 5); MD5STEP (F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP (F2, c, d, a, b, in[3] + 0xf4d50d87, 14); MD5STEP (F2, b, c, d, a, in[8] + 0x455a14ed, 20); MD5STEP (F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP (F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); MD5STEP (F2, c, d, a, b, in[7] + 0x676f02d9, 14); MD5STEP (F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP (F3, a, b, c, d, in[5] + 0xfffa3942, 4); MD5STEP (F3, d, a, b, c, in[8] + 0x8771f681, 11); MD5STEP (F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP (F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP (F3, a, b, c, d, in[1] + 0xa4beea44, 4); MD5STEP (F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); MD5STEP (F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); MD5STEP (F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP (F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP (F3, d, a, b, c, in[0] + 0xeaa127fa, 11); MD5STEP (F3, c, d, a, b, in[3] + 0xd4ef3085, 16); MD5STEP (F3, b, c, d, a, in[6] + 0x04881d05, 23); MD5STEP (F3, a, b, c, d, in[9] + 0xd9d4d039, 4); MD5STEP (F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP (F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP (F3, b, c, d, a, in[2] + 0xc4ac5665, 23); MD5STEP (F4, a, b, c, d, in[0] + 0xf4292244, 6); MD5STEP (F4, d, a, b, c, in[7] + 0x432aff97, 10); MD5STEP (F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP (F4, b, c, d, a, in[5] + 0xfc93a039, 21); MD5STEP (F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP (F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); MD5STEP (F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP (F4, b, c, d, a, in[1] + 0x85845dd1, 21); MD5STEP (F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); MD5STEP (F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP (F4, c, d, a, b, in[6] + 0xa3014314, 15); MD5STEP (F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP (F4, a, b, c, d, in[4] + 0xf7537e82, 6); MD5STEP (F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP (F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); MD5STEP (F4, b, c, d, a, in[9] + 0xeb86d391, 21); hash[0] += a; hash[1] += b; hash[2] += c; hash[3] += d;}static inline voidle32_to_cpu_array (u32 *buf, unsigned words){ while (words--) { __le32_to_cpus (buf); buf++; }}static inline voidcpu_to_le32_array (u32 *buf, unsigned words){ while (words--) { __cpu_to_le32s (buf); buf++; }}static inline voidmd5_transform_helper (md5_ctx_t * ctx){ le32_to_cpu_array (ctx->in, sizeof (ctx->in) / sizeof (u32)); md5_transform (ctx->hash, ctx->in);}/* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */static inline voidmd5_final (md5_ctx_t * ctx, u8 out[16]){ /* Number of bytes in ctx->in */ const int offset = ctx->byte_count & 0x3f; /* p points after last content byte in ctx->in */ u8 *p = (u8 *) ctx->in + offset; /* Bytes of padding needed to make 56 bytes (-8..55) */ int padding = 56 - (offset + 1); /* Set the first byte of padding to 0x80. There is always room. */ *p++ = 0x80; if (padding < 0) { /* Padding forces an extra block */ memset (p, 0x00, padding + sizeof (u64)); md5_transform_helper (ctx); p = (u8 *) ctx->in; padding = 56; } /* pad remaining bytes w/ 0x00 */ memset (p, 0x00, padding); /* Append length in bits and transform */ ctx->in[14] = ctx->byte_count << 3; /* low order word first */ ctx->in[15] = ctx->byte_count >> 29; /* keep the appended bit-count words in host order! */ le32_to_cpu_array (ctx->in, (sizeof (ctx->in) - sizeof (u64)) / sizeof (u32)); md5_transform (ctx->hash, ctx->in); /* convert digest buf from host to LE byteorder */ cpu_to_le32_array (ctx->hash, sizeof (ctx->hash) / sizeof (u32)); /* copy to output buffer */ memcpy (out, ctx->hash, sizeof (ctx->hash)); /* wipe context */ memset (ctx, 0, sizeof (ctx));}/*****************************************************************************//* public entry points *//* * Initialize MD5 context. Set bit count to 0 and buffer to mysterious * initialization constants. */static intmd5_open (struct digest_context *cx, int atomic){ md5_ctx_t *ctx = (md5_ctx_t *) cx->digest_info; ctx->hash[0] = 0x67452301; ctx->hash[1] = 0xefcdab89; ctx->hash[2] = 0x98badcfe; ctx->hash[3] = 0x10325476; ctx->byte_count = 0; return 0;}/* * Update context to reflect the concatenation of another buffer full * of bytes. */static intmd5_update (struct digest_context *cx, const u8 *in, int size, int atomic){ md5_ctx_t *ctx = (md5_ctx_t *) cx->digest_info; /* Space available in ctx->in (at least 1) */ const u32 avail = sizeof (ctx->in) - (ctx->byte_count & 0x3f); /* Update byte count */ ctx->byte_count += size; /* if in fits in ctx->in just copy and return */ if (avail > size) { memcpy ((u8 *) ctx->in + (sizeof (ctx->in) - avail), in, size); return 0; } /* First chunk is an odd size */ memcpy ((u8 *) ctx->in + (sizeof (ctx->in) - avail), in, avail); md5_transform_helper (ctx); in += avail; size -= avail; /* Process data in sizeof(ctx->in) chunks */ while (size >= sizeof (ctx->in)) { memcpy (ctx->in, in, sizeof (ctx->in)); md5_transform_helper (ctx); in += sizeof (ctx->in); size -= sizeof (ctx->in); } /* assert (size < sizeof(ctx->in)); */ /* Handle any remaining bytes of data. */ memcpy (ctx->in, in, size); return 0;}static intmd5_close (struct digest_context *cx, u8 *out, int atomic){ md5_ctx_t *ctx = (md5_ctx_t *) cx->digest_info; md5_final (ctx, out); return 0;}static intmd5_digest (struct digest_context *cx, u8 *out, int atomic){ md5_ctx_t *ctx = (md5_ctx_t *) cx->digest_info; md5_ctx_t *ctx_copy; /* work on copy */ ctx_copy = kmalloc (sizeof (md5_ctx_t), GFP_KERNEL); memcpy (ctx_copy, ctx, sizeof (md5_ctx_t)); md5_final (ctx_copy, out); kfree (ctx_copy); return 0;}/*-------sha1------------*/#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))/* blk0() and blk() perform the initial expand. *//* I got the idea of expanding during the round function from SSLeay */# define blk0(i) block32[i]#define blk(i) (block32[i&15] = rol(block32[(i+13)&15]^block32[(i+8)&15] \ ^block32[(i+2)&15]^block32[i&15],1))/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5); \ w=rol(w,30);#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5); \ w=rol(w,30);#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5); \ w=rol(w,30);#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);/* Hash a single 512-bit block. This is the core of the algorithm. */static voidSHA1Transform(u32 state[5], const u8 buffer[64]){ register u32 a, b, c, d, e; u32 block32[16]; /* convert/copy data to workspace */ for (a = 0; a < sizeof(block32)/sizeof(u32); a++) block32[a] = be32_to_cpu (((const u32 *)buffer)[a]); /* Copy context->state[] to working vars */ a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; /* 4 rounds of 20 operations each. Loop unrolled. */ R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -