⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ssx31b_cipher_digest.c

📁 海思KEY驱动
💻 C
📖 第 1 页 / 共 3 页
字号:
			 const u8 *iv){	int err;	unsigned char ucOpt=0x0;	/*0x000:crypto operation only and en-do*/	int saNum;	unsigned long OutDatLen;	saNum=ssx31b_ctx_mapping_getsanum(cx);	if(saNum<0) return -1;	err=ssx31b_crypto_perform(ucOpt, iv, cx->ci->blocksize, saNum, in, size, out, &OutDatLen);	if(err!=0) return -1;	return 0;}static int aes_ecb_decrypt(struct cipher_context *cx,                        const u8 *in, u8 *out, int size, int atomic, 			const u8 *iv){	int err;	unsigned char ucOpt=0x01;	/*0x001:crypto operation only and de-do*/	int saNum;	unsigned long OutDatLen;	saNum=ssx31b_ctx_mapping_getsanum(cx);	if(saNum<0) return -1;	err=ssx31b_crypto_perform(ucOpt, iv, cx->ci->blocksize, saNum, in, size, out, &OutDatLen);	if(err!=0) return -1;	return 0;}/*===CBC====*/static int aes_cbc_encrypt(struct cipher_context *cx,                         const u8 *in, u8 *out, int size, int atomic, 			 const u8 *iv){	//printk("aes_cbc_encrypt: size=%d !\n",size);	return aes_ecb_encrypt(cx,  in, out,  size,  atomic,  iv);	}static int aes_cbc_decrypt(struct cipher_context *cx,                        const u8 *in, u8 *out, int size, int atomic, 			const u8 *iv){	//printk("aes_cbc_decrypt: size=%d !\n",size);		return aes_ecb_decrypt( cx,  in,  out,  size,  atomic,  iv);}#define SSX31B_CIPHER_AES_ID                aes#define SSX31B_CIPHER_AES_STR               "aes"#define SSX31B_CIPHER_AES_BLOCKSIZE         128#define SSX31B_CIPHER_AES_KEY_SIZE_MASK   CIPHER_KEYSIZE_128 | CIPHER_KEYSIZE_192 | CIPHER_KEYSIZE_256#define SSX31B_CIPHER_AES_KEY_SCHEDULE_SIZE (3*32*sizeof(u32))/*----scb2-------------------*/static int scb2_ecb_set_key(struct cipher_context *cx, 	  		const unsigned char *key, int keybytes, int atomic){    //u32 *method;    int status;   // unsigned char lkey[24];    //unsigned char n1, n2;    //method=(u32 *)cx->keyinfo;unsigned short usOpt;unsigned char* lkey=(unsigned char*)(cx->keyinfo);	int saNum;    /* asign keybits based on keylength */	if (keybytes == 16) {		memcpy(lkey,key,keybytes);	} else		return -EINVAL;    cx->key_length = keybytes;#if 0    /* set the correct parity bit for each byte in the key*/    for(i=0; i<24; i++){	    n1 = lkey[i] & 0xfe;	    n2 = n1 ^ (n1 >> 4);	    n2 ^= (n2 >> 2);	    n2 ^= (n2 >> 1);	    lkey[i] = n1 | (~n2 & 0x01);	        }        /* check for degenerate keys */    if(keybytes > 8 &&       (memcmp(lkey,lkey+8,8)==0 || memcmp(lkey+8,lkey+16,8)==0))	    return -2;    if((status = des_part_set_key(method, lkey)) != 0) 	    return status;    if((status = des_part_set_key(method+32, lkey+8)) != 0) 	    return status;    if((status = des_part_set_key(method+64, lkey+16)) != 0) 	    return status;#endif   saNum=ssx31b_ctx_mapping_getsanum(cx);   if(saNum<0) return -1;   usOpt=20;	/*000 0101 00: ?? scb2 ECB*/   status=ssx31b_sa_register( usOpt, lkey, NULL, saNum);   if(status<0) return -1;   return 0;}static int scb2_cbc_set_key(struct cipher_context *cx, 	  		const unsigned char *key, int keybytes, int atomic){    int status;unsigned short usOpt;unsigned char* lkey=(unsigned char*)(cx->keyinfo);	int saNum;    /* asign keybits based on keylength */	if (keybytes == 16) {		memcpy(lkey,key,keybytes);	} else		return -EINVAL;    cx->key_length = keybytes;   saNum=ssx31b_ctx_mapping_getsanum(cx);   if(saNum<0) return -1;   usOpt=21;	/*000 0101 01: ?? scb2 CBC*/   status=ssx31b_sa_register( usOpt, (unsigned long *)lkey, NULL, saNum);   if(status<0) return -1;   return 0;}static int scb2_ecb_encrypt(struct cipher_context *cx,                         const u8 *in, u8 *out, int size, int atomic, 			 const u8 *iv){	int err;	unsigned char ucOpt=0x0;	/*0x000:crypto operation only and en-do*/	int saNum;	unsigned long OutDatLen;	saNum=ssx31b_ctx_mapping_getsanum(cx);	if(saNum<0) return -1;	err=ssx31b_crypto_perform(ucOpt, iv, cx->ci->blocksize, saNum, in, size, out, &OutDatLen);	if(err!=0) return -1;	return 0;}static int scb2_ecb_decrypt(struct cipher_context *cx,                        const u8 *in, u8 *out, int size, int atomic, 			const u8 *iv){	int err;	unsigned char ucOpt=0x01;	/*0x001:crypto operation only and de-do*/	int saNum;	unsigned long OutDatLen;	saNum=ssx31b_ctx_mapping_getsanum(cx);	if(saNum<0) return -1;	err=ssx31b_crypto_perform(ucOpt, iv, cx->ci->blocksize, saNum, in, size, out, &OutDatLen);	if(err!=0) return -1;	return 0;}/*===CBC====*/static int scb2_cbc_encrypt(struct cipher_context *cx,                         const u8 *in, u8 *out, int size, int atomic, 			 const u8 *iv){	return scb2_ecb_encrypt(cx,  in, out,  size,  atomic,  iv);	}static int scb2_cbc_decrypt(struct cipher_context *cx,                        const u8 *in, u8 *out, int size, int atomic, 			const u8 *iv){		return scb2_ecb_decrypt( cx,  in,  out,  size,  atomic,  iv);}#define SSX31B_CIPHER_SCB2_ID                scb2#define SSX31B_CIPHER_SCB2_STR               "scb2"#define SSX31B_CIPHER_SCB2_BLOCKSIZE         128#define SSX31B_CIPHER_SCB2_KEY_SIZE_MASK   CIPHER_KEYSIZE_128#define SSX31B_CIPHER_SCB2_KEY_SCHEDULE_SIZE (3*32*sizeof(u32))static struct cipher_context *ssx31b_default_realloc_cipher_context(struct cipher_context *old_cx,                           struct cipher_implementation *ci,                           int max_key_len){	struct cipher_context *cx;	int i;	/* Default ciphers need the same amount of memory for any key           size *///printk("ssx31b_crypto: realloc_cipher_context!\n");	if (old_cx) {		return old_cx;	}	cx = kmalloc(sizeof(struct cipher_context) +		     ci->key_schedule_size, GFP_KERNEL);	if (!cx) {		return NULL;	}	memset(cx,0,sizeof(struct cipher_context) +						ci->key_schedule_size);	for (i=0;i<ci->ivsize;i++)		cx->iv[i]=(i+1)&0xff;			/*default IV*/		cx->ci = ci;	cx->keyinfo = (void *)((char *)cx)+sizeof(struct cipher_context);	(void) max_key_len; /* Make gcc happy */	if(ssx31b_ctx_mapping_set(cx)<0){		kfree(cx);		return NULL;	}	return cx;}static void ssx31b_default_wipe_context(struct cipher_context *cx){	struct cipher_implementation *ci = cx->ci;	u32 *keyinfo = cx->keyinfo;	memset(cx->keyinfo, 0, ci->key_schedule_size);	memset(cx, 0, sizeof(struct cipher_context));	cx->ci = ci;	cx->keyinfo = keyinfo;	}static void ssx31b_default_free_cipher_context(struct cipher_context *cx){	if(cx==NULL) return;	ssx31b_ctx_mapping_clear(cx);	kfree(cx);	return;}/*======================================================*//*				digest													*//*======================================================*//*MD5*/typedef struct {	u64 byte_count;	u32 hash[4];		/* hash buf */	u32 in[16];		/* 64-byte inbuffer */} md5_ctx_t;typedef struct {	u64 count;	u32 state[5];	u8 buffer[64];} sha1_ctx_t;#ifdef NOT_ONLY_HMAC/* The four core functions - F1 is optimized somewhat *//* #define F1(x, y, z) (x & y | ~x & z) */#define F1(x, y, z) (z ^ (x & (y ^ z)))#define F2(x, y, z) F1(z, x, y)#define F3(x, y, z) (x ^ y ^ z)#define F4(x, y, z) (y ^ (x | ~z))/* This is the central step in the MD5 algorithm. */#define MD5STEP(f,w,x,y,z,in,s) \	 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)/* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data.  MD5Update blocks * the data and converts bytes into longwords for this routine. */static inline voidmd5_transform (u32 hash[4], u32 const in[16]){	register u32 a, b, c, d;	a = hash[0];	b = hash[1];	c = hash[2];	d = hash[3];	MD5STEP (F1, a, b, c, d, in[0] + 0xd76aa478, 7);	MD5STEP (F1, d, a, b, c, in[1] + 0xe8c7b756, 12);	MD5STEP (F1, c, d, a, b, in[2] + 0x242070db, 17);	MD5STEP (F1, b, c, d, a, in[3] + 0xc1bdceee, 22);	MD5STEP (F1, a, b, c, d, in[4] + 0xf57c0faf, 7);	MD5STEP (F1, d, a, b, c, in[5] + 0x4787c62a, 12);	MD5STEP (F1, c, d, a, b, in[6] + 0xa8304613, 17);	MD5STEP (F1, b, c, d, a, in[7] + 0xfd469501, 22);	MD5STEP (F1, a, b, c, d, in[8] + 0x698098d8, 7);	MD5STEP (F1, d, a, b, c, in[9] + 0x8b44f7af, 12);	MD5STEP (F1, c, d, a, b, in[10] + 0xffff5bb1, 17);	MD5STEP (F1, b, c, d, a, in[11] + 0x895cd7be, 22);	MD5STEP (F1, a, b, c, d, in[12] + 0x6b901122, 7);	MD5STEP (F1, d, a, b, c, in[13] + 0xfd987193, 12);	MD5STEP (F1, c, d, a, b, in[14] + 0xa679438e, 17);	MD5STEP (F1, b, c, d, a, in[15] + 0x49b40821, 22);	MD5STEP (F2, a, b, c, d, in[1] + 0xf61e2562, 5);	MD5STEP (F2, d, a, b, c, in[6] + 0xc040b340, 9);	MD5STEP (F2, c, d, a, b, in[11] + 0x265e5a51, 14);	MD5STEP (F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);	MD5STEP (F2, a, b, c, d, in[5] + 0xd62f105d, 5);	MD5STEP (F2, d, a, b, c, in[10] + 0x02441453, 9);	MD5STEP (F2, c, d, a, b, in[15] + 0xd8a1e681, 14);	MD5STEP (F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);	MD5STEP (F2, a, b, c, d, in[9] + 0x21e1cde6, 5);	MD5STEP (F2, d, a, b, c, in[14] + 0xc33707d6, 9);	MD5STEP (F2, c, d, a, b, in[3] + 0xf4d50d87, 14);	MD5STEP (F2, b, c, d, a, in[8] + 0x455a14ed, 20);	MD5STEP (F2, a, b, c, d, in[13] + 0xa9e3e905, 5);	MD5STEP (F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);	MD5STEP (F2, c, d, a, b, in[7] + 0x676f02d9, 14);	MD5STEP (F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);	MD5STEP (F3, a, b, c, d, in[5] + 0xfffa3942, 4);	MD5STEP (F3, d, a, b, c, in[8] + 0x8771f681, 11);	MD5STEP (F3, c, d, a, b, in[11] + 0x6d9d6122, 16);	MD5STEP (F3, b, c, d, a, in[14] + 0xfde5380c, 23);	MD5STEP (F3, a, b, c, d, in[1] + 0xa4beea44, 4);	MD5STEP (F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);	MD5STEP (F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);	MD5STEP (F3, b, c, d, a, in[10] + 0xbebfbc70, 23);	MD5STEP (F3, a, b, c, d, in[13] + 0x289b7ec6, 4);	MD5STEP (F3, d, a, b, c, in[0] + 0xeaa127fa, 11);	MD5STEP (F3, c, d, a, b, in[3] + 0xd4ef3085, 16);	MD5STEP (F3, b, c, d, a, in[6] + 0x04881d05, 23);	MD5STEP (F3, a, b, c, d, in[9] + 0xd9d4d039, 4);	MD5STEP (F3, d, a, b, c, in[12] + 0xe6db99e5, 11);	MD5STEP (F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);	MD5STEP (F3, b, c, d, a, in[2] + 0xc4ac5665, 23);	MD5STEP (F4, a, b, c, d, in[0] + 0xf4292244, 6);	MD5STEP (F4, d, a, b, c, in[7] + 0x432aff97, 10);	MD5STEP (F4, c, d, a, b, in[14] + 0xab9423a7, 15);	MD5STEP (F4, b, c, d, a, in[5] + 0xfc93a039, 21);	MD5STEP (F4, a, b, c, d, in[12] + 0x655b59c3, 6);	MD5STEP (F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);	MD5STEP (F4, c, d, a, b, in[10] + 0xffeff47d, 15);	MD5STEP (F4, b, c, d, a, in[1] + 0x85845dd1, 21);	MD5STEP (F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);	MD5STEP (F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);	MD5STEP (F4, c, d, a, b, in[6] + 0xa3014314, 15);	MD5STEP (F4, b, c, d, a, in[13] + 0x4e0811a1, 21);	MD5STEP (F4, a, b, c, d, in[4] + 0xf7537e82, 6);	MD5STEP (F4, d, a, b, c, in[11] + 0xbd3af235, 10);	MD5STEP (F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);	MD5STEP (F4, b, c, d, a, in[9] + 0xeb86d391, 21);	hash[0] += a;	hash[1] += b;	hash[2] += c;	hash[3] += d;}static inline voidle32_to_cpu_array (u32 *buf, unsigned words){	while (words--) {		__le32_to_cpus (buf);		buf++;	}}static inline voidcpu_to_le32_array (u32 *buf, unsigned words){	while (words--) {		__cpu_to_le32s (buf);		buf++;	}}static inline voidmd5_transform_helper (md5_ctx_t * ctx){	le32_to_cpu_array (ctx->in, sizeof (ctx->in) / sizeof (u32));	md5_transform (ctx->hash, ctx->in);}/* * Final wrapup - pad to 64-byte boundary with the bit pattern  * 1 0* (64-bit count of bits processed, MSB-first) */static inline voidmd5_final (md5_ctx_t * ctx, u8 out[16]){	/* Number of bytes in ctx->in */	const int offset = ctx->byte_count & 0x3f;	/* p points after last content byte in ctx->in */	u8 *p = (u8 *) ctx->in + offset;	/* Bytes of padding needed to make 56 bytes (-8..55) */	int padding = 56 - (offset + 1);	/* Set the first byte of padding to 0x80.  There is always room. */	*p++ = 0x80;	if (padding < 0) {	/* Padding forces an extra block */		memset (p, 0x00, padding + sizeof (u64));		md5_transform_helper (ctx);		p = (u8 *) ctx->in;		padding = 56;	}	/* pad remaining bytes w/ 0x00 */	memset (p, 0x00, padding);	/* Append length in bits and transform */	ctx->in[14] = ctx->byte_count << 3;	/* low order word first */	ctx->in[15] = ctx->byte_count >> 29;	/* keep the appended bit-count words in host order! */	le32_to_cpu_array (ctx->in,			   (sizeof (ctx->in) - sizeof (u64)) / sizeof (u32));	md5_transform (ctx->hash, ctx->in);	/* convert digest buf from host to LE byteorder */	cpu_to_le32_array (ctx->hash, sizeof (ctx->hash) / sizeof (u32));	/* copy to output buffer */	memcpy (out, ctx->hash, sizeof (ctx->hash));	/* wipe context */	memset (ctx, 0, sizeof (ctx));}/*****************************************************************************//* public entry points *//* * Initialize MD5 context.  Set bit count to 0 and buffer to mysterious * initialization constants. */static intmd5_open (struct digest_context *cx, int atomic){	md5_ctx_t *ctx = (md5_ctx_t *) cx->digest_info;	ctx->hash[0] = 0x67452301;	ctx->hash[1] = 0xefcdab89;	ctx->hash[2] = 0x98badcfe;	ctx->hash[3] = 0x10325476;	ctx->byte_count = 0;	return 0;}/* * Update context to reflect the concatenation of another buffer full * of bytes. */static intmd5_update (struct digest_context *cx, const u8 *in, int size, int atomic){	md5_ctx_t *ctx = (md5_ctx_t *) cx->digest_info;	/* Space available in ctx->in (at least 1) */	const u32 avail = sizeof (ctx->in) - (ctx->byte_count & 0x3f);	/* Update byte count */	ctx->byte_count += size;	/* if in fits in ctx->in just copy and return */	if (avail > size) {		memcpy ((u8 *) ctx->in + (sizeof (ctx->in) - avail), in, size);		return 0;	}	/* First chunk is an odd size */	memcpy ((u8 *) ctx->in + (sizeof (ctx->in) - avail), in, avail);	md5_transform_helper (ctx);	in += avail;	size -= avail;	/* Process data in sizeof(ctx->in) chunks */	while (size >= sizeof (ctx->in)) {		memcpy (ctx->in, in, sizeof (ctx->in));		md5_transform_helper (ctx);		in += sizeof (ctx->in);		size -= sizeof (ctx->in);	}	/* assert (size < sizeof(ctx->in)); */	/* Handle any remaining bytes of data. */	memcpy (ctx->in, in, size);	return 0;}static intmd5_close (struct digest_context *cx, u8 *out, int atomic){	md5_ctx_t *ctx = (md5_ctx_t *) cx->digest_info;	md5_final (ctx, out);	return 0;}static intmd5_digest (struct digest_context *cx, u8 *out, int atomic){	md5_ctx_t *ctx = (md5_ctx_t *) cx->digest_info;	md5_ctx_t *ctx_copy;	/* work on copy */	ctx_copy = kmalloc (sizeof (md5_ctx_t), GFP_KERNEL);	memcpy (ctx_copy, ctx, sizeof (md5_ctx_t));	md5_final (ctx_copy, out);	kfree (ctx_copy);	return 0;}/*-------sha1------------*/#define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))/* blk0() and blk() perform the initial expand. *//* I got the idea of expanding during the round function from SSLeay */# define blk0(i) block32[i]#define blk(i) (block32[i&15] = rol(block32[(i+13)&15]^block32[(i+8)&15] \    ^block32[(i+2)&15]^block32[i&15],1))/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */#define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5); \                        w=rol(w,30);#define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5); \                        w=rol(w,30);#define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);#define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5); \                        w=rol(w,30);#define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);/* Hash a single 512-bit block. This is the core of the algorithm. */static voidSHA1Transform(u32 state[5], const u8 buffer[64]){	register u32 a, b, c, d, e;	u32 block32[16];	/* convert/copy data to workspace */	for (a = 0; a < sizeof(block32)/sizeof(u32); a++)	  block32[a] = be32_to_cpu (((const u32 *)buffer)[a]);	/* Copy context->state[] to working vars */	a = state[0];	b = state[1];	c = state[2];	d = state[3];	e = state[4];	/* 4 rounds of 20 operations each. Loop unrolled. */	R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);	R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -