📄 divarruns.vhd
字号:
--------------------------------------------------------------------------------- Title : Unsigned array divider-- Project : VHDL Library of Arithmetic Units--------------------------------------------------------------------------------- File : DivArrUns.vhd-- Author : Reto Zimmermann <zimmi@iis.ee.ethz.ch>-- Company : Integrated Systems Laboratory, ETH Zurich-- Date : 1997/12/03--------------------------------------------------------------------------------- Copyright (c) 1998 Integrated Systems Laboratory, ETH Zurich--------------------------------------------------------------------------------- Description :-- Restoring array divider for unsigned numbers. Divisor must be normalized-- (i.e. Y(widthY-1) = '1')-------------------------------------------------------------------------------library ieee;use ieee.std_logic_1164.all;library synergy; use synergy.signed_arith.all;library arith_lib;use arith_lib.arith_lib.all;-------------------------------------------------------------------------------entity DivArrUns is generic (widthX : positive := 16; -- word width of X widthY : positive := 8); -- word width of Y port (X : in std_logic_vector(widthX-1 downto 0); -- dividend Y : in std_logic_vector(widthY-1 downto 0); -- divisor, normalized Q : out std_logic_vector(widthX-widthY downto 0); -- quotient R : out std_logic_vector(widthY-1 downto 0)); -- remainderend DivArrUns;-------------------------------------------------------------------------------architecture Behavioral of DivArrUns is signal Xuns : unsigned(widthX-1 downto 0); -- unsigned signal Yuns : unsigned(widthY-1 downto 0); -- unsigned signal Quns : unsigned(widthX-1 downto 0); -- unsigned signal Runs : unsigned(widthY-1 downto 0); -- unsignedbegin -- type conversion: std_logic_vector -> unsigned Xuns <= unsigned(X); Yuns <= unsigned(Y); -- division => quotient Quns <= Xuns / Yuns; -- modulo => remainder Runs <= Xuns mod Yuns; -- type conversion: unsigned -> std_logic_vector Q <= std_logic_vector(Quns(widthX-widthY downto 0)); R <= std_logic_vector(Runs);end Behavioral;-------------------------------------------------------------------------------architecture Structural of DivArrUns is constant widthQ : positive := widthX-widthY+1; -- word width of Q signal YI : std_logic_vector(widthY downto 0); -- inverted Y signal ST : std_logic_vector(widthQ*(widthY+1)-1 downto 0); -- sums signal RT : std_logic_vector((widthQ+1)*(widthY+2)-1 downto 0); -- remainders signal CT : std_logic_vector(widthQ*(widthY+2)-1 downto 0); -- carriesbegin -- invert divisor Y for subtraction YI <= '1' & not Y; -- first partial remainder is dividend X RT(widthQ*(widthY+2)+widthY downto widthQ*(widthY+2)+1) <= '0' & X(widthX-1 downto widthX-widthY+1); -- process one row for each quotient bit row : for k in widthQ-1 downto 0 generate -- carry-in = '1' for subtraction CT(k*(widthY+2)) <= '1'; -- attach next dividend bit to current remainder RT((k+1)*(widthY+2)) <= X(k); -- perform subtraction using ripple-carry adder -- (currend partial remainder - divisor) bits : for i in widthY downto 0 generate fa : FullAdder port map (YI(i), RT((k+1)*(widthY+2)+i), CT(k*(widthY+2)+i), ST(k*(widthY+1)+i), CT(k*(widthY+2)+i+1)); end generate bits; -- if subtraction result is negative => quotient bit = '0' Q(k) <= CT(k*(widthY+2)+widthY+1); -- restore previous partial remainder if quotient bit = '0' RT(k*(widthY+2)+widthY+1 downto k*(widthY+2)+1) <= RT((k+1)*(widthY+2)+widthY downto (k+1)*(widthY+2)) when CT(k*(widthY+2)+widthY+1) = '0' else ST(k*(widthY+1)+widthY downto k*(widthY+1)); end generate row; -- last partial remainder is division remainder R <= RT(widthY downto 1);end Structural;-------------------------------------------------------------------------------
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -