📄 serial.v
字号:
parameter m1_idle = 0;
parameter m1_start = 1;
parameter m1_shift = 3;
parameter m1_over_run = 2;
parameter m1_under_run = 4;
parameter m1_all_low = 5;
parameter m1_extra_1 = 6;
parameter m1_extra_2 = 7;
parameter m2_data_ready_flag = 1;
parameter m2_data_ready_ack = 0;
// I/O declarations
input clk;
input rx_clk;
input reset;
input rxd;
input read;
output [DATA_BITS_PP-1:0] data;
output data_ready;
output error_over_run;
output error_under_run;
output error_all_low;
reg [DATA_BITS_PP-1:0] data;
reg data_ready;
reg error_over_run;
reg error_under_run;
reg error_all_low;
// Local signal declarations
`define TOTAL_BITS START_BITS_PP + DATA_BITS_PP + STOP_BITS_PP
wire word_xfer_l;
wire mid_bit_l;
wire start_bit_l;
wire stop_bit_l;
wire all_low_l;
reg [3:0] intrabit_count_l;
reg [`TOTAL_BITS-1:0] q;
reg shifter_preset;
reg [2:0] m1_state;
reg [2:0] m1_next_state;
reg m2_state;
reg m2_next_state;
// State register
always @(posedge clk)
begin : m1_state_register
if (reset) m1_state <= m1_idle;
else m1_state <= m1_next_state;
end
always @(m1_state
or reset
or rxd
or mid_bit_l
or all_low_l
or start_bit_l
or stop_bit_l
)
begin : m1_state_logic
// Output signals are low unless set high in a state condition.
shifter_preset <= 0;
error_over_run <= 0;
error_under_run <= 0;
error_all_low <= 0;
case (m1_state)
m1_idle :
begin
shifter_preset <= 1'b1;
if (~rxd) m1_next_state <= m1_start;
else m1_next_state <= m1_idle;
end
m1_start :
begin
if (~rxd && mid_bit_l) m1_next_state <= m1_shift;
else if (rxd && mid_bit_l) m1_next_state <= m1_under_run;
else m1_next_state <= m1_start;
end
m1_shift :
begin
if (all_low_l) m1_next_state <= m1_all_low;
else if (~start_bit_l && ~stop_bit_l) m1_next_state <= m1_over_run;
else if (~start_bit_l && stop_bit_l) m1_next_state <= m1_idle;
else m1_next_state <= m1_shift;
end
m1_over_run :
begin
error_over_run <= 1;
shifter_preset <= 1'b1;
if (reset) m1_next_state <= m1_idle;
else m1_next_state <= m1_over_run;
end
m1_under_run :
begin
error_under_run <= 1;
shifter_preset <= 1'b1;
if (reset) m1_next_state <= m1_idle;
else m1_next_state <= m1_under_run;
end
m1_all_low :
begin
error_all_low <= 1;
shifter_preset <= 1'b1;
if (reset) m1_next_state <= m1_idle;
else m1_next_state <= m1_all_low;
end
default : m1_next_state <= m1_idle;
endcase
end
assign word_xfer_l = ((m1_state == m1_shift) && ~start_bit_l && stop_bit_l);
// State register
always @(posedge clk)
begin : m2_state_register
if (reset) m2_state <= m2_data_ready_ack;
else m2_state <= m2_next_state;
end
// State transition logic
always @(m2_state or word_xfer_l or read)
begin : m2_state_logic
case (m2_state)
m2_data_ready_ack:
begin
data_ready <= 1'b0;
if (word_xfer_l) m2_next_state <= m2_data_ready_flag;
else m2_next_state <= m2_data_ready_ack;
end
m2_data_ready_flag:
begin
data_ready <= 1'b1;
if (read) m2_next_state <= m2_data_ready_ack;
else m2_next_state <= m2_data_ready_flag;
end
default : m2_next_state <= m2_data_ready_ack;
endcase
end
// This counts within a bit-time.
always @(posedge clk)
begin
if (shifter_preset) intrabit_count_l <= 0;
else if (rx_clk)
begin
if (intrabit_count_l == (CLOCK_FACTOR_PP-1)) intrabit_count_l <= 0;
else intrabit_count_l <= intrabit_count_l + 1;
end
end
// This signal gets one "rx_clk" at the middle of the bit time.
assign mid_bit_l = ((intrabit_count_l==(CLOCK_FACTOR_PP / 2)) && rx_clk);
// This is the shift register
always @(posedge clk)
begin : rxd_shifter
if (shifter_preset) q <= -1; // Set to all ones.
else if (mid_bit_l) q <= {rxd,q[`TOTAL_BITS-1:1]};
end
// Note: The definitions of "start_bit_l" and "stop_bit_l" could
// well be updated to include _all_ of the start and stop bits.
assign start_bit_l = q[0];
assign stop_bit_l = q[`TOTAL_BITS-1];
assign all_low_l = ~(| q); // Bit-wise or of the entire shift register
// This is the output buffer
always @(posedge clk)
begin : rxd_output
if (reset) data <= 0;
else if (word_xfer_l)
data <= q[START_BITS_PP+DATA_BITS_PP-1:START_BITS_PP];
end
endmodule
//`undef TOTAL_BITS
//-----------------------------------------
// This block takes care of framing up an RS232 output word,
// and sending it out the "txd" line in a serial fashion.
// The user is responsible for providing appropriate clk
// and clock enable (tx_clk) to achieve the desired Baudot interval
// (a new bit is transmitted each (tx_clk/clock_factor) pulses)
// (NOTE: the state machine operates at "clock_factor" times the
// desired BAUD rate. Set it to anything between 2 and 16,
// inclusive. It may be useful to adjust the clock_factor in order to
// generate good BAUD clocks from odd Fclk frequencies on your board.)
// A load operation may be performed at any time. If two consecutive loads
// are performed while the transmitter is operating, the second load will
// overwrite the contents of the first load operation.
// Each time the "load_request" line becomes high the unit has finished
// sending its previous character. One clk after the rising edge of
// "load_request", the tx shift register is loaded with a new character from
// the holding buffer. The holding buffer may also be loaded at this time,
// that is, on the first clk following the assertion of "load_request"
//
// Once the new data is loaded, the "load_request" line will drop low again,
// acknowledging receipt of the next character to be transmitted.
//
// If the "load_request" line is tied to "load," the unit will send
// data characters continuously, with no gaps in between transmissions.
//
// Note that support is not provided for 1.5 stop bits, only integral
// numbers of stop bits are allowed. A selection of more than 2 for
// number of stop bits will still work fine, it will simply introduce
// a delay between characters being transmitted, although the length
// of the transmitter shift register will also grow to include one
// stage for each stop bit requested...
`timescale 1ns/100ps
module rs232tx (
clk,
tx_clk,
reset,
load,
data,
load_request,
txd
);
parameter START_BITS_PP = 1;
parameter DATA_BITS_PP = 8;
parameter STOP_BITS_PP = 1;
parameter CLOCK_FACTOR_PP = 16;
parameter TX_BIT_COUNT_BITS_PP = 4; // = ceil(log(total_bits)/log(2)));
// State encodings, provided as parameters
// for flexibility to the one instantiating the module
parameter m1_idle = 0;
parameter m1_waiting = 1;
parameter m1_sending = 3;
parameter m1_sending_last_bit = 2;
// I/O declarations
input clk;
input tx_clk;
input reset;
input load;
input[DATA_BITS_PP-1:0] data;
output load_request;
output txd;
reg load_request;
// local signals
`define TOTAL_BITS START_BITS_PP + DATA_BITS_PP + STOP_BITS_PP
reg [`TOTAL_BITS-1:0] q; // Actual tx shifter
reg [DATA_BITS_PP-1:0] data_in_waiting; // Data waiting to be sent next
reg [TX_BIT_COUNT_BITS_PP-1:0] tx_bit_count_l;
reg [3:0] prescaler_count_l;
reg [1:0] m1_state;
reg [1:0] m1_next_state;
wire [`TOTAL_BITS-1:0] tx_word = {{STOP_BITS_PP{1'b1}},
data_in_waiting,
{START_BITS_PP{1'b0}}};
wire begin_last_bit;
wire start_sending;
wire tx_clk_1x;
// This is a prescaler to produce the actual transmit clock.
always @(posedge clk)
begin
if (reset) prescaler_count_l <= 0;
else if (tx_clk)
begin
if (prescaler_count_l == (CLOCK_FACTOR_PP-1)) prescaler_count_l <= 0;
else prescaler_count_l <= prescaler_count_l + 1;
end
end
assign tx_clk_1x = ((prescaler_count_l == (CLOCK_FACTOR_PP-1) ) && tx_clk);
// This is the transmitted bit counter
always @(posedge clk)
begin
if (start_sending) tx_bit_count_l <= 0;
else if (tx_clk_1x)
begin
if (tx_bit_count_l == (`TOTAL_BITS-2)) tx_bit_count_l <= 0;
else tx_bit_count_l <= tx_bit_count_l + 1;
end
end
assign begin_last_bit = ((tx_bit_count_l == (`TOTAL_BITS-2) ) && tx_clk_1x);
// This is the holding register. It can be reloaded at any time.
always @(posedge clk)
begin
if (load) data_in_waiting <= data;
end
assign start_sending = ((tx_clk_1x && load_request && load)
||(tx_clk_1x && (m1_state==m1_waiting)));
// This state machine handles sending out the transmit data
// State register.
always @(posedge clk)
begin : state_register
if (reset) m1_state <= m1_idle;
else m1_state <= m1_next_state;
end
// State transition logic
always @(m1_state or tx_clk_1x or load or begin_last_bit)
begin : state_logic
// Signal is low unless changed in a state condition.
load_request <= 0;
case (m1_state)
m1_idle :
begin
load_request <= 1;
if (tx_clk_1x && load) m1_next_state <= m1_sending;
else if (load) m1_next_state <= m1_waiting;
else m1_next_state <= m1_idle;
end
m1_waiting :
begin
if (tx_clk_1x) m1_next_state <= m1_sending;
else m1_next_state <= m1_waiting;
end
m1_sending :
begin
if (begin_last_bit) m1_next_state <= m1_sending_last_bit;
else m1_next_state <= m1_sending;
end
m1_sending_last_bit :
begin
load_request <= tx_clk_1x;
if (load & tx_clk_1x) m1_next_state <= m1_sending;
else if (tx_clk_1x) m1_next_state <= m1_idle;
else m1_next_state <= m1_sending_last_bit;
end
default :
begin
m1_next_state <= m1_idle;
end
endcase
end
// This is the transmit shifter
always @(posedge clk)
begin : txd_shifter
if (reset) q <= -1; // set to all ones
else if (start_sending) q <= tx_word;
else if (tx_clk_1x) q <= {1'b1,q[`TOTAL_BITS-1:1]};
end
assign txd = q[0];
endmodule
//`undef TOTAL_BITS
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -