⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 hsi.cpp

📁 基于视觉的道路识别技术的智能小车导航源代码
💻 CPP
字号:
/**$6
 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 *
 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 */

#include "stdafx.h"
#include "HSI.h"
#include <math.h>
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
#define DEGREES_PER_RADIAN	(180.0 / 3.14159265358979)
//#define pi 3.1415926
// 在计算图像大小时,采用公式:biSizeImage = biWidth' × biHeight。
// 是biWidth',而不是biWidth,这里的biWidth'必须是4的整倍数,表示
// 大于或等于biWidth的,离4最近的整倍数。WIDTHBYTES就是用来计算
// biWidth'
#define WIDTHBYTES(bits)    (((bits) + 31) / 32 * 4)
// define UNDEFINED_HUE -1.000
#define UNDEFINED_HUE	0.000
#define ZERO_SATURATION 0.0

/**
 =======================================================================================================================
 *
 =======================================================================================================================
 */
int RgbToLuv(RGB *RgbPtr, LUV *LuvPtr)
{
	double	r, g, b;
	double x,y,z;
        double up,vp,x0,y0,z0,u0,v0;
		double a;
		a=1.0/3.0;
        x0=97.28;y0=100;z0=116.14;
        r = (double) RgbPtr->r;
	    g = (double) RgbPtr->g;
    	b = (double) RgbPtr->b;
        x=0.607*r+0.174*g+0.20*b;
        y=0.299*r+0.587*g+0.114*b;
        z=0.066*g+1.116*b;
        up=4*x/(x+15*y+3*z);
        vp=9*y/(x+15*y+3*z);
        u0=4*x0/(x0+15*y0+3*z0);
        v0=9*y0/(x0+15*y0+3*z0);
		if(y/y0>0.08856)
        LuvPtr->l=116*pow(double(y/y0),a)-16;
		else
        LuvPtr->l=903.3*y/y0;
        LuvPtr->u=13*(LuvPtr->l)*(up-u0);
        LuvPtr->v=13*(LuvPtr->l)*(vp-v0);
	return 0;
}
int RgbToHsi(RGB *RgbPtr, HSI *HsiPtr)
{
	double	R, G, B, Sum, Quotient;
	double	Radians, Angle, MinValue, MaxValue, TempDouble1, TempDouble2;
	R = ((double) RgbPtr->r) / 255.0;
	G = ((double) RgbPtr->g) / 255.0;
	B = ((double) RgbPtr->b) / 255.0;
	Sum = R + G + B;
	HsiPtr->Intensity = Sum / 3.0;
	MinValue = (R < G) ? R : G;
	MinValue = (B < MinValue) ? B : MinValue;
	MaxValue = (R > G) ? R : G;
	MaxValue = (B > MaxValue) ? B : MaxValue;
	if(HsiPtr->Intensity < 0.0001)
		HsiPtr->Saturation = ZERO_SATURATION;
	else
		HsiPtr->Saturation = 1.0 - (3.0 * MinValue) / Sum;
	if(MinValue == MaxValue)
	{
		HsiPtr->Hue = UNDEFINED_HUE;
		HsiPtr->Saturation = ZERO_SATURATION;
		return 0;
	}

	TempDouble1 = (((R - G) + (R - B)) / 2.0);
	TempDouble2 = (R - G) * (R - G) + (R - B) * (G - B);
	Quotient = (TempDouble1 / sqrt(TempDouble2));
	if(Quotient > 0.99999999999999999)//0.99999999999999999
		Radians = 0.0;
	else if(Quotient < -0.99999999999999999)//0.99999999999999999
		Radians = 3.1415926535;
	else
		Radians = acos(TempDouble1 / sqrt(TempDouble2));
	Angle = Radians * DEGREES_PER_RADIAN;
	if(B > G)
		HsiPtr->Hue = 360.0 - Angle;
	else
		HsiPtr->Hue = Angle;
	return 0;
}

/*************************************************************************
 *
 * 函数名称:
 *   HoughDIB()
 *
 * 参数:
 *   LPSTR lpDIBBits    - 指向源DIB图像指针
 *   LONG  lWidth       - 源图像宽度(象素数,必须是4的倍数)
 *   LONG  lHeight      - 源图像高度(象素数)
 * 返回值:
 *   BOOL               - 运算成功返回TRUE,否则返回FALSE。
 *
 * 说明:
 * 该函数用于对检测图像中的平行直线。如果图像中有两条平行的直线,则将这两条平行直线
 * 提取出来。
 * 
 * 要求目标图像为只有0和255两个灰度值的灰度图像。
 ************************************************************************/
/*
BOOL WINAPI HoughDIB(LPBYTE lpDIBBits, LONG lWidth, LONG lHeight)
{
		
	// 指向源图像的指针
	LPBYTE	lpSrc;

	// 图像每行的字节数
	LONG lLineBytes;
	
	//指向变换域的指针
	int*	lpTransArea;
	HLOCAL	hTransArea;

	//变换域的尺寸
	int iMaxDist;
	int iMaxAngleNumber;
     
	//变换域的坐标
	int iDist;
	int iAngleNumber;

	//循环变量
	long i;
	long j;

	//像素值
	unsigned char pixel;

	//存储变换域中的两个最大值
	MaxValue MaxValue1;
	MaxValue MaxValue2;
	double sintab[180],costab[180];
	for(int x=-90;x<90;x++)
	{
	  sintab[x+90]=sin(x*pi/180);
	  costab[x+90]=cos(x*pi/180);
	}
    
	//计算变换域的尺寸
	//最大距离
	iMaxDist = (int) (sqrt(lWidth*lWidth + lHeight*lHeight)+1);

	//角度从-180-180,每格1度
	iMaxAngleNumber = 180;

	//为变换域分配内存
	hTransArea = LocalAlloc(LHND, iMaxAngleNumber *iMaxDist * sizeof(int));


	
	// 锁定内存
	lpTransArea = (int * )LocalLock(hTransArea);
		
	// 初始化新分配的内存,设定初始值为0
	//lpTrans = (int *)lpTransArea;
	memset(lpTransArea, 0, iMaxAngleNumber *iMaxDist * sizeof(int));

	// 计算图像每行的字节数
	lLineBytes =lWidth * 3;
    //lLineBytes = WIDTHBYTES(lWidth * 24);
	for(j =50;j<lHeight-50;j++) 
	 {
		for(i =20;i<lWidth-20;i++)
		{

			// 指向源图像倒数第j行,第i个象素的指针			
			lpSrc = (unsigned char *)lpDIBBits + lLineBytes * j + 3*i;

			//取得当前指针处的像素值,注意要转换为unsigned char型
			pixel = (unsigned char)*lpSrc;

			//目标图像中含有0和255外的其它灰度值
			if(pixel != 255 && *lpSrc != 0)
				return FALSE;

			//如果是黑点,则在变换域的对应各点上加1
			if(pixel == 255 )
			{
				//注意步长是2度
				for(iAngleNumber=0; iAngleNumber<180; iAngleNumber++)
				{
					iDist = (int)(i*costab[iAngleNumber] + \
						j*sintab[iAngleNumber]);
				    if(iDist<0)continue;
					//变换域的对应点上加1
					*(lpTransArea+iDist*180+iAngleNumber) = \
						*(lpTransArea+iDist*180+iAngleNumber) +1;
				

				}
			}
		
		}
	}
				
	//找到变换域中的两个最大值点
	MaxValue1.Value=0;
	MaxValue2.Value=0;
	/*
	MaxValue1.Dist=100;
	MaxValue2.Dist=100;
	MaxValue1.AngleNumber=45;
	MaxValue2.AngleNumber=45;
	
	//找到第一个最大值点
	for (iDist=0; iDist<iMaxDist;iDist++)
	{
		for(iAngleNumber=0; iAngleNumber<180; iAngleNumber++)
		{
			if(*(lpTransArea+iDist*180+iAngleNumber)>MaxValue1.Value)
			{
				MaxValue1.Value = *(lpTransArea+iDist*180+iAngleNumber);
				MaxValue1.Dist = iDist;
				MaxValue1.AngleNumber = iAngleNumber;
                			
				
			}

		}
	}

	//将第一个最大值点附近清零
	for (iDist = -19;iDist < 20;iDist++)
	{
		for(iAngleNumber=-5; iAngleNumber<6; iAngleNumber++)
		{
			if(iDist+MaxValue1.Dist>=0 && iDist+MaxValue1.Dist<iMaxDist \
				&& iAngleNumber+MaxValue1.AngleNumber>=0 && iAngleNumber+MaxValue1.AngleNumber<=iMaxAngleNumber)
			{
				*(lpTransArea+(iDist+MaxValue1.Dist)*iMaxAngleNumber+\
					(iAngleNumber+MaxValue1.AngleNumber))=0;
			}
		}
	}

	//找到第二个最大值点
	for (iDist=0; iDist<iMaxDist;iDist++)
	{
		for(iAngleNumber=0; iAngleNumber<180; iAngleNumber++)
		{
			if((int)*(lpTransArea+iDist*180+iAngleNumber)>MaxValue2.Value)
			{
				MaxValue2.Value = (int)*(lpTransArea+iDist*180+iAngleNumber);
				MaxValue2.Dist = iDist;
				MaxValue2.AngleNumber = iAngleNumber;
			}

		}
	}


	//判断两直线是否平行
//	if(abs(MaxValue1.AngleNumber-MaxValue2.AngleNumber)<=42)
//	{
		//两直线平行,在缓存图像中重绘这两条直线
		for(j = 0; j <lHeight; j++)
		{
			for(i = 0;i <lWidth; i++)
			{	

				// 指向缓存图像倒数第j行,第i个象素的指针			
				lpSrc = (unsigned char *)lpDIBBits + lLineBytes * j + 3*i;	

				//如果该点在某一条平行直线上,则在缓存图像上将该点赋为黑MaxValue1.AngleNumber

				//在第一条直线上
				iDist = (int) ((i*costab[MaxValue1.AngleNumber]+\
							j*sintab[MaxValue1.AngleNumber]));
				if(iDist<0)continue;
				if (iDist == MaxValue1.Dist  )
				{
					*lpSrc = (unsigned char)0;
					*(lpSrc+1) = (unsigned char)0xff;
					*(lpSrc+2) = (unsigned char)0;
				}
   
		    	
				//在第二条直线上
			    iDist = (int) (i*costab[MaxValue2.AngleNumber]+\
							j*sintab[MaxValue2.AngleNumber]);
				if(iDist<0)continue;
				if (iDist == MaxValue2.Dist)
				{
					*lpSrc = (unsigned char)0;
					*(lpSrc+1) = (unsigned char)0;
					*(lpSrc+2) = (unsigned char)0xff;
				}
				
			
			}
			
		}
	//}

	// 复制腐蚀后的图像
//	memcpy(lpDIBBits, lpNewDIBBits, lWidth * lHeight);

	// 释放内存
//	LocalUnlock(hNewDIBBits);
//	LocalFree(hNewDIBBits);

	// 释放内存
	LocalUnlock(hTransArea);
	LocalFree(hTransArea);

	// 返回
	return TRUE;

}
*/
void TableSmooth(int *pg,int m,int n)
{
  int i,j,k;
  for(j=0;j<n;j++)
  {
    k=pg[0];//保存第一点数据
	for(i=1;i<m-1;i++)
		pg[i-1]=(pg[i-1]+pg[i]+pg[i+1])/3;
	for(i=m-1;i>0;i--)
		pg[i]=pg[i-1];
	pg[0]=k;//恢复第一点数据
  }
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -