📄 reg_8_io_clrset.v
字号:
// ----------------------------------------------------------------------------
// reg_8_io_clrset.v
//
// AUTHOR : John Clayton
// ----------------------------------------------------------------------------
// Release History
// VERSION DATE AUTHOR DESCRIPTION
// ------- ----------- ----------------- ------------------------------------
// 1.0 12/06/02 John Clayton Initial Version
// ----------------------------------------------------------------------------
// PURPOSE: This module implements a set of eight addresses and a data bus of
// the given width. These addresses have write ports and read ports
// associated with them.
// See NOTES below for further details of operation.
// ----------------------------------------------------------------------------
// Parameters
// NAME RANGE DESCRIPTION DEFAULT
// -------------------- -------- -------------------------- -----------------
// SIZE_R0_PP 1..16 Number of bits in register 8
// SIZE_R1_PP 1..16 Number of bits in register 8
// SIZE_R2_PP 1..16 Number of bits in register 8
// SIZE_R3_PP 1..16 Number of bits in register 8
// SIZE_R4_PP 1..16 Number of bits in register 8
// SIZE_R5_PP 1..16 Number of bits in register 8
// SIZE_R6_PP 1..16 Number of bits in register 8
// SIZE_R7_PP 1..16 Number of bits in register 8
// DATA_BUS_SIZE_PP 4..24 Sets the width of the data bus 16
//
// ----------------------------------------------------------------------------
// USABILITY FACTORS
// Reset Strategy : Asynchronous
// Clock Domains : clk_i
// Critical Timing : None
// Test Features : None
// Asynchronous I/F : None
// Scan Methodology : None
// Instantiations : N/A
// Other : N/A
// ----------------------------------------------------------------------------
// NOTES
//
// The address vector "adr_i" selects among the eight locations
// present in the module. In order to read data from a register location, the
// we_i line must be inactive (low), and the "sel_i" signal must also be
// active (high.) Then, the unit will drive the data bus.
//
// Writing is similar - drive we_i active (high), make sel_i high, drive the
// write data onto the data bus, and provide a "posedge clk_i" to store the
// data into the selected register.
//
// The registers are composed of d-flip-flops (DFFs), clocked by clk_i.
//
// The registers can be set to all ones, or else cleared to all zeros by the
// set_i and clr_i input busses. These signals, if raised to a logic high will
// change the contents of the register on the next rising clock edge.
// (synchronous set/clear operation.)
// This feature is especially useful for single bit registers which are used
// as flags to begin an operation, and which are subsequently cleared by the
// hardware.
//
// In the case where both set and clear are active at the same time, the clear
// input is given priority. Also, the signals for set_i and clr_i are given
// priority over any attempted write operations from the bus.
//
// ----------------------------------------------------------------------------
module reg_8_io_clrset(
clk_i,
rst_i,
clr_i,
set_i,
sel_i,
we_i,
adr_i,
dat_io,
r0_i,
r1_i,
r2_i,
r3_i,
r4_i,
r5_i,
r6_i,
r7_i,
r0_o,
r1_o,
r2_o,
r3_o,
r4_o,
r5_o,
r6_o,
r7_o
);
// Parameter declarations
parameter SIZE_R0_PP = 8; // Determines size of register in bits.
parameter SIZE_R1_PP = 8; // Determines size of register in bits.
parameter SIZE_R2_PP = 8; // Determines size of register in bits.
parameter SIZE_R3_PP = 8; // Determines size of register in bits.
parameter SIZE_R4_PP = 8; // Determines size of register in bits.
parameter SIZE_R5_PP = 8; // Determines size of register in bits.
parameter SIZE_R6_PP = 8; // Determines size of register in bits.
parameter SIZE_R7_PP = 8; // Determines size of register in bits.
parameter DATA_BUS_SIZE_PP = 16; // Sets the width of the data bus.
// I/O declarations
input clk_i; // System clock input
input rst_i; // Reset signal
input [7:0] clr_i; // synchronous clear inputs
input [7:0] set_i; // synchronous set inputs
input sel_i; // Reg block "chip select"
input we_i; // write enable signal
input [2:0] adr_i; // Register address field
inout [DATA_BUS_SIZE_PP-1:0] dat_io; // DSP data bus
input [SIZE_R0_PP-1:0] r0_i; // Register I
input [SIZE_R1_PP-1:0] r1_i; // Register I
input [SIZE_R2_PP-1:0] r2_i; // Register I
input [SIZE_R3_PP-1:0] r3_i; // Register I
input [SIZE_R4_PP-1:0] r4_i; // Register I
input [SIZE_R5_PP-1:0] r5_i; // Register I
input [SIZE_R6_PP-1:0] r6_i; // Register I
input [SIZE_R7_PP-1:0] r7_i; // Register I
output [SIZE_R0_PP-1:0] r0_o; // Register O
output [SIZE_R1_PP-1:0] r1_o; // Register O
output [SIZE_R2_PP-1:0] r2_o; // Register O
output [SIZE_R3_PP-1:0] r3_o; // Register O
output [SIZE_R4_PP-1:0] r4_o; // Register O
output [SIZE_R5_PP-1:0] r5_o; // Register O
output [SIZE_R6_PP-1:0] r6_o; // Register O
output [SIZE_R7_PP-1:0] r7_o; // Register O
reg [SIZE_R0_PP-1:0] r0_o; // Register O
reg [SIZE_R1_PP-1:0] r1_o; // Register O
reg [SIZE_R2_PP-1:0] r2_o; // Register O
reg [SIZE_R3_PP-1:0] r3_o; // Register O
reg [SIZE_R4_PP-1:0] r4_o; // Register O
reg [SIZE_R5_PP-1:0] r5_o; // Register O
reg [SIZE_R6_PP-1:0] r6_o; // Register O
reg [SIZE_R7_PP-1:0] r7_o; // Register O
// Internal declarations
reg [7:0] read_dat;
//---------------------------------------------------------------
// Generate a select bus (1 high out of N)
// This is the writing side of the registers
always @(posedge clk_i or posedge rst_i)
begin
if (rst_i) begin // Asynchronous reset
r0_o <= 0;
r1_o <= 0;
r2_o <= 0;
r3_o <= 0;
r4_o <= 0;
r5_o <= 0;
r6_o <= 0;
r7_o <= 0;
end
else // clock edge
begin
if (we_i && sel_i)
case (adr_i)
0:
if (SIZE_R0_PP > 1) r0_o <= dat_io[SIZE_R0_PP-1:0];
else if (SIZE_R0_PP == 1) r0_o <= dat_io[0];
1:
if (SIZE_R1_PP > 1) r1_o <= dat_io[SIZE_R1_PP-1:0];
else if (SIZE_R1_PP == 1) r1_o <= dat_io[0];
2:
if (SIZE_R2_PP > 1) r2_o <= dat_io[SIZE_R2_PP-1:0];
else if (SIZE_R2_PP == 1) r2_o <= dat_io[0];
3:
if (SIZE_R3_PP > 1) r3_o <= dat_io[SIZE_R3_PP-1:0];
else if (SIZE_R3_PP == 1) r3_o <= dat_io[0];
4:
if (SIZE_R4_PP > 1) r4_o <= dat_io[SIZE_R4_PP-1:0];
else if (SIZE_R4_PP == 1) r4_o <= dat_io[0];
5:
if (SIZE_R5_PP > 1) r5_o <= dat_io[SIZE_R5_PP-1:0];
else if (SIZE_R5_PP == 1) r5_o <= dat_io[0];
6:
if (SIZE_R6_PP > 1) r6_o <= dat_io[SIZE_R6_PP-1:0];
else if (SIZE_R6_PP == 1) r6_o <= dat_io[0];
7:
if (SIZE_R7_PP > 1) r7_o <= dat_io[SIZE_R7_PP-1:0];
else if (SIZE_R7_PP == 1) r7_o <= dat_io[0];
endcase
// Priority is given to the clr_i, then set_i, then the bus (above)...
if (set_i[0] || clr_i[0]) r0_o <= {SIZE_R0_PP{~clr_i[0]}};
if (set_i[1] || clr_i[1]) r1_o <= {SIZE_R1_PP{~clr_i[1]}};
if (set_i[2] || clr_i[2]) r2_o <= {SIZE_R2_PP{~clr_i[2]}};
if (set_i[3] || clr_i[3]) r3_o <= {SIZE_R3_PP{~clr_i[3]}};
if (set_i[4] || clr_i[4]) r4_o <= {SIZE_R4_PP{~clr_i[4]}};
if (set_i[5] || clr_i[5]) r5_o <= {SIZE_R5_PP{~clr_i[5]}};
if (set_i[6] || clr_i[6]) r6_o <= {SIZE_R6_PP{~clr_i[6]}};
if (set_i[7] || clr_i[7]) r7_o <= {SIZE_R7_PP{~clr_i[7]}};
end
end // End of always block
always @(
r0_i
or r1_i
or r2_i
or r3_i
or r4_i
or r5_i
or r6_i
or r7_i
or adr_i
)
begin
case (adr_i)
0 : read_dat <= r0_i;
1 : read_dat <= r1_i;
2 : read_dat <= r2_i;
3 : read_dat <= r3_i;
4 : read_dat <= r4_i;
5 : read_dat <= r5_i;
6 : read_dat <= r6_i;
7 : read_dat <= r7_i;
endcase
end
assign dat_io = (~we_i && sel_i)?read_dat:{DATA_BUS_SIZE_PP{1'bz}};
endmodule
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -