📄 spreadgda.m
字号:
function projectedVectors=SpreadGDA(T,L,dataGDA);
% Spread test vectors T into the GDA discriminant subspace.
% L is the learning vectors (like for buildGDA).
% dataGDA must be the output from buildGDA.
% T and L use line vectors
% Gaston Baudat & Fatiha Anouar / 21st October 2000 / Exton PA 19341 USA
% Designed under MatLab for Windows version 5.2.0.3084
n=length(T(:,1)); %size of the test set
m=length(L(:,1)); %size of the learning set
KernelEva=zeros(n,m);
for i=1:n
tmp=zeros(1,m);
for j=1:m
tmp(j)=KernelFunction(T(i,:),L(j,:));
end
KernelEva(i,:)=tmp-sum(tmp)/m;
end
inter=dataGDA.sumK-sum(dataGDA.sumK)/m;
for i=1:n
KernelEva(i,:)=KernelEva(i,:)-inter;
end
projectedVectors=KernelEva*dataGDA.norAlpha;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -