📄 gda_iris.m
字号:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Example of the GDA using the Fisher's iris data %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This file provides information for using the GDA MatLab code.
% Designed under MatLab for Windows version 5.2.0.3084
%
%
% Need the following files (must be known by MatLab, see File/Set Path ...):
%
% General purpose:
%
% KernelFunction.m The kernel current function.
% EigenSystem.m Evaluate and sort the eigen values and vectors.
% DataSt.m Center and normalize the data.
% Iris.m The Fisher's iris data (3 x 50 samples / 4 variables)
%
% GDA specific:
%
% BuildGDA.m Build the GDA solution (give a data structure)
% SpreadGDA.m Spread test vectors into the GDA discriminant subspace.
% PlotGDA.m Plot data into one, or two, discriminant axes.
% Gaston Baudat & Fatiha Anouar / 21st October 2000 / Exton PA 19341 USA
% Begin
% Build the GDA solution
Iris; % Load the raw iris data
IrisData=DataSt(IrisData); % Mean = 0, Standard Deviation = 1
dataGDA=BuildGDA(IrisData,[50,50,50]); % Build GDA solution
% 2D plot of the whole data (1st and 2nd axis)
PlotGDA(IrisData,IrisData,dataGDA,[1,2],'+') % PlotGDA uses SpreadGDA, see inside for more
% End
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -