📄 swissgrid.cpp
字号:
#include <math.h>#include "constants.h"#include "LatLong-UTMconversion.h"//forward declarationsdouble CorrRatio(double LatRad, const double C);double NewtonRaphson(const double initEstimate);void LLtoSwissGrid(const double Lat, const double Long, double &SwissNorthing, double &SwissEasting){//converts lat/long to Swiss Grid coords. Equations from "Supplementary PROJ.4 Notes-//Swiss Oblique Mercator Projection", August 5, 1995, Release 4.3.3, by Gerald I. Evenden//Lat and Long are in decimal degrees//This transformation is, of course, only valid in Switzerland //Written by Chuck Gantz- chuck.gantz@globalstar.com double a = ellipsoid[3].EquatorialRadius; //Bessel ellipsoid double eccSquared = ellipsoid[3].eccentricitySquared; double ecc = sqrt(eccSquared); double LongOrigin = 7.43958333; //E7d26'22.500" double LatOrigin = 46.95240556; //N46d57'8.660" double LatRad = Lat*deg2rad; double LongRad = Long*deg2rad; double LatOriginRad = LatOrigin*deg2rad; double LongOriginRad = LongOrigin*deg2rad; double c = sqrt(1+((eccSquared * pow(cos(LatOriginRad), 4)) / (1-eccSquared))); double equivLatOrgRadPrime = asin(sin(LatOriginRad) / c); //eqn. 1 double K = log(tan(FOURTHPI + equivLatOrgRadPrime/2)) -c*(log(tan(FOURTHPI + LatOriginRad/2)) - ecc/2 * log((1+ecc*sin(LatOriginRad)) / (1-ecc*sin(LatOriginRad)))); double LongRadPrime = c*(LongRad - LongOriginRad); //eqn 2 double w = c*(log(tan(FOURTHPI + LatRad/2)) - ecc/2 * log((1+ecc*sin(LatRad)) / (1-ecc*sin(LatRad)))) + K; //eqn 1 double LatRadPrime = 2 * (atan(exp(w)) - FOURTHPI); //eqn 1 //eqn 3 double sinLatDoublePrime = cos(equivLatOrgRadPrime) * sin(LatRadPrime) - sin(equivLatOrgRadPrime) * cos(LatRadPrime) * cos(LongRadPrime); double LatRadDoublePrime = asin(sinLatDoublePrime); //eqn 4 double sinLongDoublePrime = cos(LatRadPrime)*sin(LongRadPrime) / cos(LatRadDoublePrime); double LongRadDoublePrime = asin(sinLongDoublePrime); double R = a*sqrt(1-eccSquared) / (1-eccSquared*sin(LatOriginRad) * sin(LatOriginRad)); SwissNorthing = R*log(tan(FOURTHPI + LatRadDoublePrime/2)) + 200000.0; //eqn 5 SwissEasting = R*LongRadDoublePrime + 600000.0; //eqn 6}void SwissGridtoLL(const double SwissNorthing, const double SwissEasting, double& Lat, double& Long){ double a = ellipsoid[3].EquatorialRadius; //Bessel ellipsoid double eccSquared = ellipsoid[3].eccentricitySquared; double ecc = sqrt(eccSquared); double LongOrigin = 7.43958333; //E7d26'22.500" double LatOrigin = 46.95240556; //N46d57'8.660" double LatOriginRad = LatOrigin*deg2rad; double LongOriginRad = LongOrigin*deg2rad; double R = a*sqrt(1-eccSquared) / (1-eccSquared*sin(LatOriginRad) * sin(LatOriginRad)); double LatRadDoublePrime = 2*(atan(exp((SwissNorthing - 200000.0)/R)) - FOURTHPI); //eqn. 7 double LongRadDoublePrime = (SwissEasting - 600000.0)/R; //eqn. 8 with equation corrected double c = sqrt(1+((eccSquared * pow(cos(LatOriginRad), 4)) / (1-eccSquared))); double equivLatOrgRadPrime = asin(sin(LatOriginRad) / c); double sinLatRadPrime = cos(equivLatOrgRadPrime)*sin(LatRadDoublePrime) + sin(equivLatOrgRadPrime)*cos(LatRadDoublePrime)*cos(LongRadDoublePrime); double LatRadPrime = asin(sinLatRadPrime); double sinLongRadPrime = cos(LatRadDoublePrime)*sin(LongRadDoublePrime)/cos(LatRadPrime); double LongRadPrime = asin(sinLongRadPrime); Long = (LongRadPrime/c + LongOriginRad) * rad2deg; Lat = NewtonRaphson(LatRadPrime) * rad2deg;}double NewtonRaphson(const double initEstimate){ double Estimate = initEstimate; double tol = 0.00001; double corr; double eccSquared = ellipsoid[3].eccentricitySquared; double ecc = sqrt(eccSquared); double LatOrigin = 46.95240556; //N46d57'8.660" double LatOriginRad = LatOrigin*deg2rad; double c = sqrt(1+((eccSquared * pow(cos(LatOriginRad), 4)) / (1-eccSquared))); double equivLatOrgRadPrime = asin(sin(LatOriginRad) / c); //eqn. 1 double K = log(tan(FOURTHPI + equivLatOrgRadPrime/2)) -c*(log(tan(FOURTHPI + LatOriginRad/2)) - ecc/2 * log((1+ecc*sin(LatOriginRad)) / (1-ecc*sin(LatOriginRad)))); double C = (K - log(tan(FOURTHPI + initEstimate/2)))/c; do { corr = CorrRatio(Estimate, C); Estimate = Estimate - corr; } while (fabs(corr) > tol); return Estimate;}double CorrRatio(double LatRad, const double C){ double eccSquared = ellipsoid[3].eccentricitySquared; double ecc = sqrt(eccSquared); double corr = (C + log(tan(FOURTHPI + LatRad/2)) - ecc/2 * log((1+ecc*sin(LatRad)) / (1-ecc*sin(LatRad)))) * (((1-eccSquared*sin(LatRad)*sin(LatRad)) * cos(LatRad)) / (1-eccSquared)); return corr;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -