⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cpuside.v

📁 这是arm7处理器的verilog全代码
💻 V
📖 第 1 页 / 共 2 页
字号:
// Memory Interface - Main ASM.`timescale 1ns/100ps module CPU_coupler(D, A, nMREQ, nRW, MAS, nWAIT, sysclk, reset, Store_Trigger, Load_Trigger, 		   write_buffer_data, write_buffer_addr, write_buffer_is_byte, st_busy, ld_busy, 		   load_from_mem_req, load_from_mem_data, load_from_mem_offset);   inout [31:0]  D;   input [31:0]  A;   input 	 nMREQ;   input 	 nRW;   input [1:0] 	 MAS;   input 	 st_busy, ld_busy;   input 	 sysclk, reset;   input 	load_from_mem_req;   input [31:0] load_from_mem_data;   input [1:0] 	load_from_mem_offset;      output 	 nWAIT;   output 	 Store_Trigger, Load_Trigger;   output 	 write_buffer_is_byte;   output [31:0] write_buffer_data, write_buffer_addr;          wire [31:0] 	D;   wire [31:0] 	A;   wire 	nMREQ, nRW;   wire [1:0] 	MAS;   wire		nWAIT;   wire 	st_busy, ld_busy;   wire 	sysclk, reset;   reg [31:0] 	write_buffer_data;   reg [31:0] 	write_buffer_addr;   reg 		write_buffer_is_byte;   reg 		Load_Trigger, Store_Trigger;   wire 	load_from_mem_req;   wire [31:0]	load_from_mem_data;   wire [1:0] 	load_from_mem_offset;      // All defines   `define MAIN_CACHE_LINES     64   `define MAIN_CACHE_LINE_BITS 6   // _BITS - 1 + 4   `define MAIN_CACHE_LINE_BIT_HIGH 9   // - 1 + 4 = Ignore 4word addr.   `define MAIN_CACHE_LINE_BIT_LOW 4   `define MAIN_CACHE_TAG_BITS  22   // 31 - BITS   `define MAIN_CACHE_TAG_BIT_LOW 9   `define MAIN_CACHE_TAG_BIT_HIGH 31    `define VICTIM_CACHE_LINES     4   `define VICTIM_CACHE_TAG_BITS  28      `define CPUSIDE_NUM_STATE_BITS 4   `define CPUSIDE_IDLE           4'b0000   `define CPUSIDE_WAIT	          4'b0001   `define CPUSIDE_WAIT2          4'b0010   `define CPUSIDE_LOADING        4'b0011   `define CPUSIDE_LOADEND        4'b0100   // Use DEDSEC?   `define DO_DEDSEC   //`define DEDSEC_DEBUG   // Tell me what you're doing?   //`define TALK      // Registers used by CPU ASM  (Memory Registers are just above its ASM, lower down)   reg [127:0]                      main_cache        [`MAIN_CACHE_LINES-1:0];   reg [`MAIN_CACHE_TAG_BITS-1:0]   main_cache_tag    [`MAIN_CACHE_LINES-1:0];   reg [24:0] 			    main_cache_dedsec [`MAIN_CACHE_LINES-1:0];   reg 				    main_cache_valid  [`MAIN_CACHE_LINES-1:0];      reg [127:0] 			    victim_cache        [`VICTIM_CACHE_LINES-1:0];   reg [`VICTIM_CACHE_TAG_BITS-1:0] victim_cache_tag    [`VICTIM_CACHE_LINES-1:0];   reg [24:0] 			    victim_cache_dedsec [`VICTIM_CACHE_LINES-1:0];   reg 				    victim_cache_valid  [`VICTIM_CACHE_LINES-1:0];   reg [1:0] 			    oldest_victim_line;      reg [`CPUSIDE_NUM_STATE_BITS-1:0] present_cpu_state;   reg 			     cpu_busy;   reg [31:0]		     Dout;   reg 			     victim_dedsec_result, main_dedsec_result;   // Required by initial for loop   integer 		     i; `ifdef DO_DEDSEC   function [24:0] dedsec_bits;      input [127:0] 	     data;      integer 		     i,j;      begin	 	 // Horizontal decsec bits		 // Calculate the horizontal dedsec bits on the bottom. 	 // The code, rather silly, calculate the dedsec bits of the column of data one by one. 	 dedsec_bits[24] = data[127]^data[111]^data[95]^data[79]^data[63]^data[47]^data[31]^data[15];	 dedsec_bits[23] = data[126]^data[110]^data[94]^data[78]^data[62]^data[46]^data[30]^data[14];	 dedsec_bits[22] = data[125]^data[109]^data[93]^data[77]^data[61]^data[45]^data[29]^data[13];	 dedsec_bits[21] = data[124]^data[108]^data[92]^data[76]^data[60]^data[44]^data[28]^data[12];	 dedsec_bits[20] = data[123]^data[107]^data[91]^data[75]^data[59]^data[43]^data[27]^data[11];	 dedsec_bits[19] = data[122]^data[106]^data[90]^data[74]^data[58]^data[42]^data[26]^data[10];	 dedsec_bits[18] = data[121]^data[105]^data[89]^data[73]^data[57]^data[41]^data[25]^data[ 9];	 dedsec_bits[17] = data[120]^data[104]^data[88]^data[72]^data[56]^data[40]^data[24]^data[ 8];	 dedsec_bits[16] = data[119]^data[103]^data[87]^data[71]^data[55]^data[39]^data[23]^data[ 7];	 dedsec_bits[15] = data[118]^data[102]^data[86]^data[70]^data[54]^data[38]^data[22]^data[ 6];	 dedsec_bits[14] = data[117]^data[101]^data[85]^data[69]^data[53]^data[37]^data[21]^data[ 5];	 dedsec_bits[13] = data[116]^data[100]^data[84]^data[68]^data[52]^data[36]^data[20]^data[ 4];	 dedsec_bits[12] = data[115]^data[ 99]^data[83]^data[67]^data[51]^data[35]^data[19]^data[ 3];	 dedsec_bits[11] = data[114]^data[ 98]^data[82]^data[66]^data[50]^data[34]^data[18]^data[ 2];	 dedsec_bits[10] = data[113]^data[ 97]^data[81]^data[65]^data[49]^data[33]^data[17]^data[ 1];	 dedsec_bits[ 9] = data[112]^data[ 96]^data[80]^data[64]^data[48]^data[32]^data[16]^data[ 0];	 	 // Vertical dedsec bits	 // Calculate the vertical dedsec bits on the right side. 	 // The following eight line of code initialize the dedsec_bits, xoring the first two	 //  data bits together.	 dedsec_bits[8]=data[127]^data[126];	 dedsec_bits[7]=data[111]^data[110];	 dedsec_bits[6]=data[95]^data[94];	 dedsec_bits[5]=data[79]^data[78];	 dedsec_bits[4]=data[63]^data[62];	 dedsec_bits[3]=data[47]^data[46];	 dedsec_bits[2]=data[31]^data[30];	 dedsec_bits[1]=data[15]^data[14];	 // The following double for-loop xor the rest of the data bits. 	 for ( i=8 ; i>=1; i=i-1 )	    begin	       for ( j=(i*16)-3; j>=((i-1)*16); j=j-1)		  begin		     dedsec_bits[i] = dedsec_bits[i] ^ data[j];		  end	    end	 	 // Calculate the combined dedsec bit	 // As with the previous calculations, firstly xor the first two bits 	 //  together, then xor the rest of the bits in the for loop 	 dedsec_bits[0]=dedsec_bits[1]^dedsec_bits[2];	 for ( i=3 ; i<=24; i=i+1)	    begin	       dedsec_bits[0] = dedsec_bits[0] ^ dedsec_bits[i];	    end // for ( i=3 ; i<=24; i=i+1)	 `ifdef DEDSEC_DEBUG	    $display("DEDSEC DEBUG dedsec_bits: input=%h dedsec_bits=%h", data, dedsec_bits);	 `endif	       end   endfunction // dedsec_bits`else   function [24:0] dedsec_bits;      input [127:0]          data;      dedsec_bits = 25'b1;   endfunction // dedsec_bits`endif      // Returns whether the given data passes the DEDSEC test`ifdef DO_DEDSEC      task pass_dedsec;      inout [127:0]           data;      inout [24:0] 	      dedsec;      output 		      pass_dedsec;            reg [127:0] 	      data;      reg [24:0] 	      dedsec;	      reg [24:0] 	      old_dedsec;      reg [24:0] 	      new_dedsec;      reg 		      pass_dedsec;      integer 		      i, no_of_error, error_location1, error_location2, temp, l;            begin	 	 no_of_error = 0;	 	 old_dedsec = dedsec;	 	 new_dedsec = dedsec_bits(data);	 	 // Calculate the number of error, as well as notice the location 	 //  of the errors  	 for ( i = 24 ; i >= 0 ; i = i - 1 )	    begin	       if ( old_dedsec[i] != new_dedsec[i] )		  begin		     no_of_error = no_of_error + 1;		     		     if ( no_of_error == 1 ) 			begin			   error_location1 = i; 			end		     else if ( no_of_error == 2 )			begin			   error_location2 = i;			end		     		  end	    end	 	 pass_dedsec = 1'b1;	 	 if ( no_of_error == 0 ) 	    begin	       pass_dedsec = 1'b1;	    end	 else if ( error_location1 <= 24 && error_location2 <= 24 		   && error_location1 >= 9 && error_location2 >= 9 )	    // Same row of bits contains error bits, can't recover	    begin	       pass_dedsec = 1'b0; 	    end	 else if ( error_location1 <= 8 && error_location2 <= 8 		   && error_location1 >= 1 && error_location2 >= 1 ) 	    // Same column of bits contains error bits, can't recover	    begin	       pass_dedsec = 1'b0; 	    end	 else if ( no_of_error >= 3 ) // too many errors, can't recover	    begin	       pass_dedsec = 1'b0;	    end 	 else if ( error_location1 == 0 && no_of_error == 1 ) 	    begin 	       // Just for the zeroth dedsec bit is in error.	       // Error correctable, just modify the corner bit of DEDSEC.	       // Recalculate the combined dedsec bit.	       dedsec[0]=dedsec[1]^dedsec[2];	       for ( i=3 ; i<=24; i=i+1)		  begin		     dedsec[0] = dedsec[0] ^ dedsec[i];		  end	    end	  else if ( error_location1 == 0 || error_location2 == 0) 	     // One error bit in the 0th dedsec bit another in row/column.	     begin		// Make error_location2 contains the nonzero location, to 		//  unify the correcting process 		if ( error_location2 == 0) 		   begin		      error_location2 = error_location1;		      error_location1 = 0;			   end		// If the error location is the horizontal dedsec row, 		//  then the dedsec bit is in error, recalculate that bit		if ( error_location2 <= 24 && error_location2 >= 9 ) 		   begin		      dedsec[error_location2] = data[error_location2] ^ data[error_location2+16];		      for (i = 2; i <= 7 ; i = i+1 )			 begin			    dedsec[error_location2] = dedsec[error_location2] ^    			       data[error_location2 + 16 * i];			 end		   end			// If the error location is the vertical dedsec column		//  then the dedsec bit is in error, recalculate that bit		if ( error_location2 <= 8 && error_location2 >= 1 ) 		   begin		      dedsec[error_location2] = data[(error_location2-1)*16] ^					data[(error_location2-1)*16+1];		      for (i = 2; i <= 15 ; i = i+1 )			 begin			    dedsec[error_location2] = dedsec[error_location2] ^    			       data[(error_location2-1)*16+i];			 end		   end					// Finally, after recalculating the error bit in the row/col,		//  recalculate the faulty zeroth dedsec bit. 		dedsec[0]=dedsec[1]^dedsec[2];		for ( i=3 ; i<=24; i=i+1)		   begin		      dedsec[0] = dedsec[0] ^ dedsec[i];		   end	     end	  else 	     // Finally, it is the normal case where the dedsec bit 	     //  themselves has no error and only 1 data bit have error 	     begin		// If error_loc2>error_loc1 swap them to facilitate the program		if ( error_location2 > error_location1 ) 		   begin		      temp = error_location2;		      error_location2 = error_location1;		      error_location1 = temp; 		   end		// Calculate the error bit location and invert it		l = (error_location2 - 1) * 16 + (error_location1 - 9);		data[l] = ~data[l]; 	     end	 	 `ifdef DEDSEC_DEBUG	    $display("DEDSEC DEBUG pass_dedsec: Data:new=%h dedsec:dedsec1=%h old=%h new=%h pass=%b",		     data, dedsec, old_dedsec, new_dedsec, pass_dedsec);	 `endif      end   endtask`else // If NOT DO_DEDSEC   task pass_dedsec;      inout [127:0]           data;      inout [24:0] 	      dedsec;      output 		      pass_dedsec;            pass_dedsec = 1;   endtask`endif      // Use word bits to input (update) the appropriate word from D to the cacheline   // Note that to be able to calculate the dedsec in this same cycle, we need to take the   //  merge of the current cacheline and the new cache word.   task input_word;      inout [127:0] 	     cacheline;  // Line to put the word      input [1:0] 	     word;       // Word index (within cache line)      input [31:0] 	     source;     // Where to get the update (D or load_from_mem_data)      output [24:0] 	     dedsec;     // New DEDSEC for this line      begin	 case (word)	   2'b00 : 	      begin 		 cacheline[31:0]   = source; 		 dedsec = dedsec_bits({cacheline[127: 32], source                 }); 	      end	   2'b01 : 	      begin 		 cacheline[63:32]  = source; 		 dedsec = dedsec_bits({cacheline[127: 64], source, cacheline[31:0]}); 	      end	   2'b10 : 	      begin 		 cacheline[95:64]  = source; 		 dedsec = dedsec_bits({cacheline[127: 96], source, cacheline[63:0]}); 	      end	   2'b11 : 	      begin 		 cacheline[127:96] = source; 		 dedsec = dedsec_bits({                    source, cacheline[95:0]}); 	      end	 endcase //case(address[3:2])      end   endtask // input_word         // Use lowest bits of address to input (update) the appropriate byte to the cacheline from D   // Note that to be able to calculate the dedsec in this same cycle, we need to take the   //  merge of the current cacheline and the new cache word.   task input_byte;      inout [127:0] 	     cacheline; // Line to put the word      //inout [7:0]            cacheline [15:0];      input [3:0] 	     bytepos;   // Byte index (within cache line)      input [31:0] 	     source;    // Where to get the update (always D)      output [24:0] 	     dedsec;     // New DEDSEC for this line      // It would be nice if this could all be done in one line .. how?      //cacheline[((bytepos << 3) + 7):(bytepos << 3)] = source[ 7: 0];      //cacheline[bytepos] = source[ 7: 0];      begin	 case (bytepos)	   4'b0000 : 	      begin 		 cacheline[  0+ 7:  0+ 0] = source[ 7: 0]; 		 dedsec = dedsec_bits({cacheline[127: 0+ 8], source[7:0]                    }); 	      end	   4'b0001 : 	      begin 		 cacheline[  0+15:  0+ 8] = source[ 7: 0]; 		 dedsec = dedsec_bits({cacheline[127: 0+16], source[7:0], cacheline[ 0+ 8:0]}); 	      end	   4'b0010 : 	      begin 		 cacheline[  0+23:  0+16] = source[ 7: 0]; 		 dedsec = dedsec_bits({cacheline[127: 0+24], source[7:0], cacheline[ 0+16:0]}); 	      end	   4'b0011 : 	      begin 		 cacheline[  0+31:  0+24] = source[ 7: 0]; 		 dedsec = dedsec_bits({cacheline[127: 0+32], source[7:0], cacheline[ 0+24:0]}); 	      end	   4'b0100 : 	      begin 		 cacheline[ 32+ 7: 32+ 0] = source[ 7: 0]; 		 dedsec = dedsec_bits({cacheline[127:32+ 8], source[7:0], cacheline[31+ 0:0]}); 	      end	   4'b0101 : 	      begin 		 cacheline[ 32+15: 32+ 8] = source[ 7: 0]; 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -