⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 apriori.html

📁 < 数据挖掘--实用机器学习技术及java实现> 一书结合数据挖掘和机器学习的知识,作者陈述了自动挖掘模式的基础理论,并且以java语言实现了具有代表性的各类数据挖掘方法.例如:class
💻 HTML
📖 第 1 页 / 共 4 页
字号:
<A NAME="TAGS_SELECTION"><!-- --></A><H3>TAGS_SELECTION</H3><PRE>public static final <A HREF="../../weka/core/Tag.html">Tag</A>[] <B>TAGS_SELECTION</B></PRE><DL></DL><HR><A NAME="m_metricType"><!-- --></A><H3>m_metricType</H3><PRE>protected int <B>m_metricType</B></PRE><DL><DD>The selected metric type.</DL><HR><A NAME="m_minMetric"><!-- --></A><H3>m_minMetric</H3><PRE>protected double <B>m_minMetric</B></PRE><DL><DD>The minimum metric score.</DL><HR><A NAME="m_numRules"><!-- --></A><H3>m_numRules</H3><PRE>protected int <B>m_numRules</B></PRE><DL><DD>The maximum number of rules that are output.</DL><HR><A NAME="m_delta"><!-- --></A><H3>m_delta</H3><PRE>protected double <B>m_delta</B></PRE><DL><DD>Delta by which m_minSupport is decreased in each iteration.</DL><HR><A NAME="m_significanceLevel"><!-- --></A><H3>m_significanceLevel</H3><PRE>protected double <B>m_significanceLevel</B></PRE><DL><DD>Significance level for optional significance test.</DL><HR><A NAME="m_cycles"><!-- --></A><H3>m_cycles</H3><PRE>protected int <B>m_cycles</B></PRE><DL><DD>Number of cycles used before required number of rules was one.</DL><HR><A NAME="m_Ls"><!-- --></A><H3>m_Ls</H3><PRE>protected <A HREF="../../weka/core/FastVector.html">FastVector</A> <B>m_Ls</B></PRE><DL><DD>The set of all sets of itemsets L.</DL><HR><A NAME="m_hashtables"><!-- --></A><H3>m_hashtables</H3><PRE>protected <A HREF="../../weka/core/FastVector.html">FastVector</A> <B>m_hashtables</B></PRE><DL><DD>The same information stored in hash tables.</DL><HR><A NAME="m_allTheRules"><!-- --></A><H3>m_allTheRules</H3><PRE>protected <A HREF="../../weka/core/FastVector.html">FastVector</A>[] <B>m_allTheRules</B></PRE><DL><DD>The list of all generated rules.</DL><HR><A NAME="m_instances"><!-- --></A><H3>m_instances</H3><PRE>protected <A HREF="../../weka/core/Instances.html">Instances</A> <B>m_instances</B></PRE><DL><DD>The instances (transactions) to be used for generating the association rules.</DL><HR><A NAME="m_outputItemSets"><!-- --></A><H3>m_outputItemSets</H3><PRE>protected boolean <B>m_outputItemSets</B></PRE><DL><DD>Output itemsets found?</DL><HR><A NAME="m_removeMissingCols"><!-- --></A><H3>m_removeMissingCols</H3><PRE>protected boolean <B>m_removeMissingCols</B></PRE><DL></DL><HR><A NAME="m_verbose"><!-- --></A><H3>m_verbose</H3><PRE>protected boolean <B>m_verbose</B></PRE><DL><DD>Report progress iteratively</DL><!-- ========= CONSTRUCTOR DETAIL ======== --><A NAME="constructor_detail"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Constructor Detail</B></FONT></TD></TR></TABLE><A NAME="Apriori()"><!-- --></A><H3>Apriori</H3><PRE>public <B>Apriori</B>()</PRE><DL><DD>Constructor that allows to sets default values for the  minimum confidence and the maximum number of rules the minimum confidence.</DL><!-- ============ METHOD DETAIL ========== --><A NAME="method_detail"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Method Detail</B></FONT></TD></TR></TABLE><A NAME="globalInfo()"><!-- --></A><H3>globalInfo</H3><PRE>public java.lang.String <B>globalInfo</B>()</PRE><DL><DD>Returns a string describing this associator<DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>a description of the evaluator suitable for displaying in the explorer/experimenter gui</DL></DD></DL><HR><A NAME="resetOptions()"><!-- --></A><H3>resetOptions</H3><PRE>public void <B>resetOptions</B>()</PRE><DL><DD>Resets the options to the default values.<DD><DL></DL></DD></DL><HR><A NAME="buildAssociations(weka.core.Instances)"><!-- --></A><H3>buildAssociations</H3><PRE>public void <B>buildAssociations</B>(<A HREF="../../weka/core/Instances.html">Instances</A>&nbsp;instances)                       throws java.lang.Exception</PRE><DL><DD>Method that generates all large itemsets with a minimum support, and from these all association rules with a minimum confidence.<DD><DL><DT><B>Overrides:</B><DD><CODE><A HREF="../../weka/associations/Associator.html#buildAssociations(weka.core.Instances)">buildAssociations</A></CODE> in class <CODE><A HREF="../../weka/associations/Associator.html">Associator</A></CODE></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>instances</CODE> - the instances to be used for generating the associations<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if rules can't be built successfully</DL></DD></DL><HR><A NAME="listOptions()"><!-- --></A><H3>listOptions</H3><PRE>public java.util.Enumeration <B>listOptions</B>()</PRE><DL><DD>Returns an enumeration describing the available options<DD><DL><DT><B>Specified by: </B><DD><CODE><A HREF="../../weka/core/OptionHandler.html#listOptions()">listOptions</A></CODE> in interface <CODE><A HREF="../../weka/core/OptionHandler.html">OptionHandler</A></CODE></DL></DD><DD><DL><DT><B>Returns:</B><DD>an enumeration of all the available options</DL></DD></DL><HR><A NAME="setOptions(java.lang.String[])"><!-- --></A><H3>setOptions</H3><PRE>public void <B>setOptions</B>(java.lang.String[]&nbsp;options)                throws java.lang.Exception</PRE><DL><DD>Parses a given list of options. Valid options are:<p>    -N required number of rules <br> The required number of rules (default: 10). <p> -T type of metric by which to sort rules <br> 0 = confidence | 1 = lift | 2 = leverage | 3 = Conviction. <p> -C minimum metric score of a rule <br> The minimum confidence of a rule (default: 0.9). <p> -D delta for minimum support <br> The delta by which the minimum support is decreased in each iteration (default: 0.05). -U upper bound for minimum support <br> The upper bound for minimum support. Don't explicitly look for  rules with more than this level of support. <p> -M lower bound for minimum support <br> The lower bound for the minimum support (default = 0.1). <p> -S significance level <br> If used, rules are tested for significance at the given level. Slower (default = no significance testing). <p> -I <br> If set the itemsets found are also output (default = no). <p> -V <br> If set then progress is reported iteratively during execution. <p> -R <br> If set then columns that contain all missing values are removed from the data. <p><DD><DL><DT><B>Specified by: </B><DD><CODE><A HREF="../../weka/core/OptionHandler.html#setOptions(java.lang.String[])">setOptions</A></CODE> in interface <CODE><A HREF="../../weka/core/OptionHandler.html">OptionHandler</A></CODE></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>options</CODE> - the list of options as an array of strings<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if an option is not supported</DL></DD></DL><HR><A NAME="getOptions()"><!-- --></A><H3>getOptions</H3><PRE>public java.lang.String[] <B>getOptions</B>()</PRE><DL><DD>Gets the current settings of the Apriori object.<DD><DL><DT><B>Specified by: </B><DD><CODE><A HREF="../../weka/core/OptionHandler.html#getOptions()">getOptions</A></CODE> in interface <CODE><A HREF="../../weka/core/OptionHandler.html">OptionHandler</A></CODE></DL></DD><DD><DL><DT><B>Returns:</B><DD>an array of strings suitable for passing to setOptions</DL></DD></DL><HR><A NAME="toString()"><!-- --></A><H3>toString</H3><PRE>public java.lang.String <B>toString</B>()</PRE><DL><DD>Outputs the size of all the generated sets of itemsets and the rules.<DD><DL><DT><B>Overrides:</B><DD><CODE>toString</CODE> in class <CODE>java.lang.Object</CODE></DL></DD></DL><HR><A NAME="removeAllMissingColsTipText()"><!-- --></A><H3>removeAllMissingColsTipText</H3><PRE>public java.lang.String <B>removeAllMissingColsTipText</B>()</PRE><DL><DD>Returns the tip text for this property<DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>tip text for this property suitable for displaying in the explorer/experimenter gui</DL></DD></DL><HR><A NAME="setRemoveAllMissingCols(boolean)"><!-- --></A><H3>setRemoveAllMissingCols</H3><PRE>public void <B>setRemoveAllMissingCols</B>(boolean&nbsp;r)</PRE><DL><DD>Remove columns containing all missing values.<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>r</CODE> - true if cols are to be removed.</DL></DD></DL><HR><A NAME="getRemoveAllMissingCols()"><!-- --></A><H3>getRemoveAllMissingCols</H3><PRE>public boolean <B>getRemoveAllMissingCols</B>()</PRE><DL><DD>Returns whether columns containing all missing values are to be removed<DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>true if columns are to be removed.</DL></DD></DL><HR><A NAME="upperBoundMinSupportTipText()"><!-- --></A><H3>upperBoundMinSupportTipText</H3><PRE>public java.lang.String <B>upperBoundMinSupportTipText</B>()</PRE><DL><DD>Returns the tip text for this property<DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>tip text for this property suitable for displaying in the explorer/experimenter gui</DL></DD></DL><HR><A NAME="getUpperBoundMinSupport()"><!-- --></A><H3>getUpperBoundMinSupport</H3><PRE>public double <B>getUpperBoundMinSupport</B>()</PRE><DL><DD>Get the value of upperBoundMinSupport.<DD><DL></DL></DD>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -