⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 contingencytables.html

📁 < 数据挖掘--实用机器学习技术及java实现> 一书结合数据挖掘和机器学习的知识,作者陈述了自动挖掘模式的基础理论,并且以java语言实现了具有代表性的各类数据挖掘方法.例如:class
💻 HTML
📖 第 1 页 / 共 2 页
字号:
<A NAME="constructor_detail"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Constructor Detail</B></FONT></TD></TR></TABLE><A NAME="ContingencyTables()"><!-- --></A><H3>ContingencyTables</H3><PRE>public <B>ContingencyTables</B>()</PRE><DL></DL><!-- ============ METHOD DETAIL ========== --><A NAME="method_detail"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Method Detail</B></FONT></TD></TR></TABLE><A NAME="chiSquared(double[][], boolean)"><!-- --></A><H3>chiSquared</H3><PRE>public static double <B>chiSquared</B>(double[][]&nbsp;matrix,                                boolean&nbsp;yates)</PRE><DL><DD>Returns chi-squared probability for a given matrix.<DD><DL><DT><B>Parameters:</B><DD><CODE>matrix</CODE> - the contigency table<DD><CODE>yates</CODE> - is Yates' correction to be used?<DT><B>Returns:</B><DD>the chi-squared probability</DL></DD></DL><HR><A NAME="chiVal(double[][], boolean)"><!-- --></A><H3>chiVal</H3><PRE>public static double <B>chiVal</B>(double[][]&nbsp;matrix,                            boolean&nbsp;useYates)</PRE><DL><DD>Computes chi-squared statistic for a contingency table.<DD><DL><DT><B>Parameters:</B><DD><CODE>matrix</CODE> - the contigency table<DD><CODE>yates</CODE> - is Yates' correction to be used?<DT><B>Returns:</B><DD>the value of the chi-squared statistic</DL></DD></DL><HR><A NAME="cochransCriterion(double[][])"><!-- --></A><H3>cochransCriterion</H3><PRE>public static boolean <B>cochransCriterion</B>(double[][]&nbsp;matrix)</PRE><DL><DD>Tests if Cochran's criterion is fullfilled for the given contingency table. Rows and columns with all zeros are not considered relevant.<DD><DL><DT><B>Parameters:</B><DD><CODE>matrix</CODE> - the contigency table to be tested<DT><B>Returns:</B><DD>true if contingency table is ok, false if not</DL></DD></DL><HR><A NAME="CramersV(double[][])"><!-- --></A><H3>CramersV</H3><PRE>public static double <B>CramersV</B>(double[][]&nbsp;matrix)</PRE><DL><DD>Computes Cramer's V for a contingency table.<DD><DL><DT><B>Parameters:</B><DD><CODE>matrix</CODE> - the contingency table<DT><B>Returns:</B><DD>Cramer's V</DL></DD></DL><HR><A NAME="entropy(double[])"><!-- --></A><H3>entropy</H3><PRE>public static double <B>entropy</B>(double[]&nbsp;array)</PRE><DL><DD>Computes the entropy of the given array.<DD><DL><DT><B>Parameters:</B><DD><CODE>array</CODE> - the array<DT><B>Returns:</B><DD>the entropy</DL></DD></DL><HR><A NAME="entropyConditionedOnColumns(double[][])"><!-- --></A><H3>entropyConditionedOnColumns</H3><PRE>public static double <B>entropyConditionedOnColumns</B>(double[][]&nbsp;matrix)</PRE><DL><DD>Computes conditional entropy of the rows given the columns.<DD><DL><DT><B>Parameters:</B><DD><CODE>matrix</CODE> - the contingency table<DT><B>Returns:</B><DD>the conditional entropy of the rows given the columns</DL></DD></DL><HR><A NAME="entropyConditionedOnRows(double[][])"><!-- --></A><H3>entropyConditionedOnRows</H3><PRE>public static double <B>entropyConditionedOnRows</B>(double[][]&nbsp;matrix)</PRE><DL><DD>Computes conditional entropy of the columns given the rows.<DD><DL><DT><B>Parameters:</B><DD><CODE>matrix</CODE> - the contingency table<DT><B>Returns:</B><DD>the conditional entropy of the columns given the rows</DL></DD></DL><HR><A NAME="entropyConditionedOnRows(double[][], double[][], double)"><!-- --></A><H3>entropyConditionedOnRows</H3><PRE>public static double <B>entropyConditionedOnRows</B>(double[][]&nbsp;train,                                              double[][]&nbsp;test,                                              double&nbsp;numClasses)</PRE><DL><DD>Computes conditional entropy of the columns given the rows of the test matrix with respect to the train matrix. Uses a Laplace prior. Does NOT normalize the entropy.<DD><DL><DT><B>Parameters:</B><DD><CODE>train</CODE> - the train matrix<DD><CODE>test</CODE> - the test matrix<DD><CODE>the</CODE> - number of symbols for Laplace<DT><B>Returns:</B><DD>the entropy</DL></DD></DL><HR><A NAME="entropyOverRows(double[][])"><!-- --></A><H3>entropyOverRows</H3><PRE>public static double <B>entropyOverRows</B>(double[][]&nbsp;matrix)</PRE><DL><DD>Computes the rows' entropy for the given contingency table.<DD><DL><DT><B>Parameters:</B><DD><CODE>matrix</CODE> - the contingency table<DT><B>Returns:</B><DD>the rows' entropy</DL></DD></DL><HR><A NAME="entropyOverColumns(double[][])"><!-- --></A><H3>entropyOverColumns</H3><PRE>public static double <B>entropyOverColumns</B>(double[][]&nbsp;matrix)</PRE><DL><DD>Computes the columns' entropy for the given contingency table.<DD><DL><DT><B>Parameters:</B><DD><CODE>matrix</CODE> - the contingency table<DT><B>Returns:</B><DD>the columns' entropy</DL></DD></DL><HR><A NAME="gainRatio(double[][])"><!-- --></A><H3>gainRatio</H3><PRE>public static double <B>gainRatio</B>(double[][]&nbsp;matrix)</PRE><DL><DD>Computes gain ratio for contingency table (split on rows). Returns Double.MAX_VALUE if the split entropy is 0.<DD><DL><DT><B>Parameters:</B><DD><CODE>matrix</CODE> - the contingency table<DT><B>Returns:</B><DD>the gain ratio</DL></DD></DL><HR><A NAME="log2MultipleHypergeometric(double[][])"><!-- --></A><H3>log2MultipleHypergeometric</H3><PRE>public static double <B>log2MultipleHypergeometric</B>(double[][]&nbsp;matrix)</PRE><DL><DD>Returns negative base 2 logarithm of multiple hypergeometric probability for a contingency table.<DD><DL><DT><B>Parameters:</B><DD><CODE>matrix</CODE> - the contingency table<DT><B>Returns:</B><DD>the log of the hypergeometric probability of the contingency table</DL></DD></DL><HR><A NAME="reduceMatrix(double[][])"><!-- --></A><H3>reduceMatrix</H3><PRE>public static double[][] <B>reduceMatrix</B>(double[][]&nbsp;matrix)</PRE><DL><DD>Reduces a matrix by deleting all zero rows and columns.<DD><DL><DT><B>Parameters:</B><DD><CODE>matrix</CODE> - the matrix to be reduced<DD><CODE>the</CODE> - matrix with all zero rows and columns deleted</DL></DD></DL><HR><A NAME="symmetricalUncertainty(double[][])"><!-- --></A><H3>symmetricalUncertainty</H3><PRE>public static double <B>symmetricalUncertainty</B>(double[][]&nbsp;matrix)</PRE><DL><DD>Calculates the symmetrical uncertainty for base 2.<DD><DL><DT><B>Parameters:</B><DD><CODE>matrix</CODE> - the contingency table<DT><B>Returns:</B><DD>the calculated symmetrical uncertainty</DL></DD></DL><HR><A NAME="tauVal(double[][])"><!-- --></A><H3>tauVal</H3><PRE>public static double <B>tauVal</B>(double[][]&nbsp;matrix)</PRE><DL><DD>Computes Goodman and Kruskal's tau-value for a contingency table.<DD><DL><DT><B>Parameters:</B><DD><CODE>matrix</CODE> - the contingency table<DD><CODE>Goodman</CODE> - and Kruskal's tau-value</DL></DD></DL><HR><A NAME="main(java.lang.String[])"><!-- --></A><H3>main</H3><PRE>public static void <B>main</B>(java.lang.String[]&nbsp;ops)</PRE><DL><DD>Main method for testing this class.</DL><!-- ========= END OF CLASS DATA ========= --><HR><!-- ========== START OF NAVBAR ========== --><A NAME="navbar_bottom"><!-- --></A><TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0"><TR><TD COLSPAN=2 BGCOLOR="#EEEEFF" CLASS="NavBarCell1"><A NAME="navbar_bottom_firstrow"><!-- --></A><TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3">  <TR ALIGN="center" VALIGN="top">  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../overview-summary.html"><FONT CLASS="NavBarFont1"><B>Overview</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-summary.html"><FONT CLASS="NavBarFont1"><B>Package</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#FFFFFF" CLASS="NavBarCell1Rev"> &nbsp;<FONT CLASS="NavBarFont1Rev"><B>Class</B></FONT>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-tree.html"><FONT CLASS="NavBarFont1"><B>Tree</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../deprecated-list.html"><FONT CLASS="NavBarFont1"><B>Deprecated</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../index-all.html"><FONT CLASS="NavBarFont1"><B>Index</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../help-doc.html"><FONT CLASS="NavBarFont1"><B>Help</B></FONT></A>&nbsp;</TD>  </TR></TABLE></TD><TD ALIGN="right" VALIGN="top" ROWSPAN=3><EM></EM></TD></TR><TR><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">&nbsp;<A HREF="../../weka/core/CheckOptionHandler.html"><B>PREV CLASS</B></A>&nbsp;&nbsp;<A HREF="../../weka/core/DistributedServer.html"><B>NEXT CLASS</B></A></FONT></TD><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">  <A HREF="../../index.html" TARGET="_top"><B>FRAMES</B></A>  &nbsp;&nbsp;<A HREF="ContingencyTables.html" TARGET="_top"><B>NO FRAMES</B></A></FONT></TD></TR><TR><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">  SUMMARY: &nbsp;INNER&nbsp;|&nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_summary">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_summary">METHOD</A></FONT></TD><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">DETAIL: &nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_detail">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_detail">METHOD</A></FONT></TD></TR></TABLE><!-- =========== END OF NAVBAR =========== --><HR></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -