⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vfi.html

📁 < 数据挖掘--实用机器学习技术及java实现> 一书结合数据挖掘和机器学习的知识,作者陈述了自动挖掘模式的基础理论,并且以java语言实现了具有代表性的各类数据挖掘方法.例如:class
💻 HTML
📖 第 1 页 / 共 2 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN""http://www.w3.org/TR/REC-html40/frameset.dtd"><!--NewPage--><HTML><HEAD><!-- Generated by javadoc on Wed Sep 04 10:31:49 CDT 2002 --><TITLE>: Class  VFI</TITLE><LINK REL ="stylesheet" TYPE="text/css" HREF="../../stylesheet.css" TITLE="Style"></HEAD><BODY BGCOLOR="white"><!-- ========== START OF NAVBAR ========== --><A NAME="navbar_top"><!-- --></A><TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0"><TR><TD COLSPAN=2 BGCOLOR="#EEEEFF" CLASS="NavBarCell1"><A NAME="navbar_top_firstrow"><!-- --></A><TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3">  <TR ALIGN="center" VALIGN="top">  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../overview-summary.html"><FONT CLASS="NavBarFont1"><B>Overview</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-summary.html"><FONT CLASS="NavBarFont1"><B>Package</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#FFFFFF" CLASS="NavBarCell1Rev"> &nbsp;<FONT CLASS="NavBarFont1Rev"><B>Class</B></FONT>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-tree.html"><FONT CLASS="NavBarFont1"><B>Tree</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../deprecated-list.html"><FONT CLASS="NavBarFont1"><B>Deprecated</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../index-all.html"><FONT CLASS="NavBarFont1"><B>Index</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../help-doc.html"><FONT CLASS="NavBarFont1"><B>Help</B></FONT></A>&nbsp;</TD>  </TR></TABLE></TD><TD ALIGN="right" VALIGN="top" ROWSPAN=3><EM></EM></TD></TR><TR><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">&nbsp;<A HREF="../../weka/classifiers/UserClassifier.html"><B>PREV CLASS</B></A>&nbsp;&nbsp;<A HREF="../../weka/classifiers/VotedPerceptron.html"><B>NEXT CLASS</B></A></FONT></TD><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">  <A HREF="../../index.html" TARGET="_top"><B>FRAMES</B></A>  &nbsp;&nbsp;<A HREF="VFI.html" TARGET="_top"><B>NO FRAMES</B></A></FONT></TD></TR><TR><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">  SUMMARY: &nbsp;INNER&nbsp;|&nbsp;<A HREF="#field_summary">FIELD</A>&nbsp;|&nbsp;<A HREF="#constructor_summary">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_summary">METHOD</A></FONT></TD><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">DETAIL: &nbsp;<A HREF="#field_detail">FIELD</A>&nbsp;|&nbsp;<A HREF="#constructor_detail">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_detail">METHOD</A></FONT></TD></TR></TABLE><!-- =========== END OF NAVBAR =========== --><HR><!-- ======== START OF CLASS DATA ======== --><H2><FONT SIZE="-1">weka.classifiers</FONT><BR>Class  VFI</H2><PRE>java.lang.Object  |  +--<A HREF="../../weka/classifiers/Classifier.html">weka.classifiers.Classifier</A>        |        +--<A HREF="../../weka/classifiers/DistributionClassifier.html">weka.classifiers.DistributionClassifier</A>              |              +--<B>weka.classifiers.VFI</B></PRE><DL><DT><B>All Implemented Interfaces:</B> <DD>java.lang.Cloneable, <A HREF="../../weka/core/OptionHandler.html">OptionHandler</A>, java.io.Serializable, <A HREF="../../weka/core/WeightedInstancesHandler.html">WeightedInstancesHandler</A></DD></DL><HR><DL><DT>public class <B>VFI</B><DT>extends <A HREF="../../weka/classifiers/DistributionClassifier.html">DistributionClassifier</A><DT>implements <A HREF="../../weka/core/OptionHandler.html">OptionHandler</A>, <A HREF="../../weka/core/WeightedInstancesHandler.html">WeightedInstancesHandler</A></DL><P>Class implementing the voting feature interval classifier. For numeric attributes, upper and lower boundaries (intervals)  are constructed  around each class. Discrete attributes have point intervals. Class counts are recorded for each interval on each feature. Classification is by voting. Missing values are ignored. Does not handle numeric class. <p> Have added a simple attribute weighting scheme. Higher weight is assigned to more confident intervals, where confidence is a function of entropy: weight (att_i) = (entropy of class distrib att_i / max uncertainty)^-bias. <p> Faster than NaiveBayes but slower than HyperPipes. <p><p> <pre>  Confidence: 0.01 (two tailed) Dataset                   (1) VFI '-B  | (2) Hyper (3) Naive                         ------------------------------------ anneal.ORIG               (10)   74.56 |   97.88 v   74.77 anneal                    (10)   71.83 |   97.88 v   86.51 v audiology                 (10)   51.69 |   66.26 v   72.25 v autos                     (10)   57.63 |   62.79 v   57.76 balance-scale             (10)   68.72 |   46.08 *   90.5  v breast-cancer             (10)   67.25 |   69.84 v   73.12 v wisconsin-breast-cancer   (10)   95.72 |   88.31 *   96.05 v horse-colic.ORIG          (10)   66.13 |   70.41 v   66.12 horse-colic               (10)   78.36 |   62.07 *   78.28 credit-rating             (10)   85.17 |   44.58 *   77.84 * german_credit             (10)   70.81 |   69.89 *   74.98 v pima_diabetes             (10)   62.13 |   65.47 v   75.73 v Glass                     (10)   56.82 |   50.19 *   47.43 * cleveland-14-heart-diseas (10)   80.01 |   55.18 *   83.83 v hungarian-14-heart-diseas (10)   82.8  |   65.55 *   84.37 v heart-statlog             (10)   79.37 |   55.56 *   84.37 v hepatitis                 (10)   83.78 |   63.73 *   83.87 hypothyroid               (10)   92.64 |   93.33 v   95.29 v ionosphere                (10)   94.16 |   35.9  *   82.6  * iris                      (10)   96.2  |   91.47 *   95.27 * kr-vs-kp                  (10)   88.22 |   54.1  *   87.84 * labor                     (10)   86.73 |   87.67     93.93 v lymphography              (10)   78.48 |   58.18 *   83.24 v mushroom                  (10)   99.85 |   99.77 *   95.77 * primary-tumor             (10)   29    |   24.78 *   49.35 v segment                   (10)   77.42 |   75.15 *   80.1  v sick                      (10)   65.92 |   93.85 v   92.71 v sonar                     (10)   58.02 |   57.17     67.97 v soybean                   (10)   86.81 |   86.12 *   92.9  v splice                    (10)   88.61 |   41.97 *   95.41 v vehicle                   (10)   52.94 |   32.77 *   44.8  * vote                      (10)   91.5  |   61.38 *   90.19 * vowel                     (10)   57.56 |   36.34 *   62.81 v waveform                  (10)   56.33 |   46.11 *   80.02 v zoo                       (10)   94.05 |   94.26     95.04 v                          ------------------------------------                                (v| |*) |  (9|3|23)  (22|5|8)  </pre> 					 <p> For more information, see <p>  Demiroz, G. and Guvenir, A. (1997) "Classification by voting feature  intervals", <i>ECML-97</i>. <p>   Valid options are:<p> -C <br> Don't Weight voting intervals by confidence. <p> -B <bias> <br> Set exponential bias towards confident intervals. default = 1.0 <p><P><DL><DT><B>See Also: </B><DD><A HREF="../../serialized-form.html#weka.classifiers.VFI">Serialized Form</A></DL><HR><P><!-- ======== INNER CLASS SUMMARY ======== --><!-- =========== FIELD SUMMARY =========== --><A NAME="field_summary"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Field Summary</B></FONT></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#m_bias">m_bias</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Bias towards more confident intervals</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#m_ClassIndex">m_ClassIndex</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The index of the class attribute</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;double[][][]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#m_counts">m_counts</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The class counts for each interval of each attribute</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;double[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#m_globalCounts">m_globalCounts</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The global class counts</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;<A HREF="../../weka/core/Instances.html">Instances</A></CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#m_Instances">m_Instances</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The training data</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;double[][]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#m_intervalBounds">m_intervalBounds</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The lower bounds for each attribute</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#m_maxEntrop">m_maxEntrop</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The maximum entropy for the class</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#m_NumClasses">m_NumClasses</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The number of classes</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#m_weightByConfidence">m_weightByConfidence</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Exponentially bias more confident intervals</TD></TR></TABLE>&nbsp;<!-- ======== CONSTRUCTOR SUMMARY ======== --><A NAME="constructor_summary"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Constructor Summary</B></FONT></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#VFI()">VFI</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR></TABLE>&nbsp;<!-- ========== METHOD SUMMARY =========== --><A NAME="method_summary"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Method Summary</B></FONT></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#biasTipText()">biasTipText</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the tip text for this property</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#buildClassifier(weka.core.Instances)">buildClassifier</A></B>(<A HREF="../../weka/core/Instances.html">Instances</A>&nbsp;instances)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Generates the classifier.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#distributionForInstance(weka.core.Instance)">distributionForInstance</A></B>(<A HREF="../../weka/core/Instance.html">Instance</A>&nbsp;instance)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Classifies the given test instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#getBias()">getBias</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Get the value of the bias parameter</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#getOptions()">getOptions</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the current settings of VFI</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#getWeightByConfidence()">getWeightByConfidence</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Get whether feature intervals are being weighted by confidence</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#globalInfo()">globalInfo</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns a string describing this search method</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.util.Enumeration</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#listOptions()">listOptions</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns an enumeration describing the available options</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#main(java.lang.String[])">main</A></B>(java.lang.String[]&nbsp;args)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Main method for testing this class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#setBias(double)">setBias</A></B>(double&nbsp;b)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Set the value of the exponential bias towards more confident intervals</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#setOptions(java.lang.String[])">setOptions</A></B>(java.lang.String[]&nbsp;options)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Parses a given list of options.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#setWeightByConfidence(boolean)">setWeightByConfidence</A></B>(boolean&nbsp;c)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Set weighting by confidence</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#toString()">toString</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns a description of this classifier.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/VFI.html#weightByConfidenceTipText()">weightByConfidenceTipText</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the tip text for this property</TD></TR></TABLE>&nbsp;<A NAME="methods_inherited_from_class_weka.classifiers.DistributionClassifier"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TD><B>Methods inherited from class weka.classifiers.<A HREF="../../weka/classifiers/DistributionClassifier.html">DistributionClassifier</A></B></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><A HREF="../../weka/classifiers/DistributionClassifier.html#classifyInstance(weka.core.Instance)">classifyInstance</A></CODE></TD></TR></TABLE>&nbsp;<A NAME="methods_inherited_from_class_weka.classifiers.Classifier"><!-- --></A>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -