⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 smo.html

📁 < 数据挖掘--实用机器学习技术及java实现> 一书结合数据挖掘和机器学习的知识,作者陈述了自动挖掘模式的基础理论,并且以java语言实现了具有代表性的各类数据挖掘方法.例如:class
💻 HTML
📖 第 1 页 / 共 2 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN""http://www.w3.org/TR/REC-html40/frameset.dtd"><!--NewPage--><HTML><HEAD><!-- Generated by javadoc on Wed Sep 04 10:31:49 CDT 2002 --><TITLE>: Class  SMO</TITLE><LINK REL ="stylesheet" TYPE="text/css" HREF="../../stylesheet.css" TITLE="Style"></HEAD><BODY BGCOLOR="white"><!-- ========== START OF NAVBAR ========== --><A NAME="navbar_top"><!-- --></A><TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0"><TR><TD COLSPAN=2 BGCOLOR="#EEEEFF" CLASS="NavBarCell1"><A NAME="navbar_top_firstrow"><!-- --></A><TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3">  <TR ALIGN="center" VALIGN="top">  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../overview-summary.html"><FONT CLASS="NavBarFont1"><B>Overview</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-summary.html"><FONT CLASS="NavBarFont1"><B>Package</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#FFFFFF" CLASS="NavBarCell1Rev"> &nbsp;<FONT CLASS="NavBarFont1Rev"><B>Class</B></FONT>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-tree.html"><FONT CLASS="NavBarFont1"><B>Tree</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../deprecated-list.html"><FONT CLASS="NavBarFont1"><B>Deprecated</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../index-all.html"><FONT CLASS="NavBarFont1"><B>Index</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../help-doc.html"><FONT CLASS="NavBarFont1"><B>Help</B></FONT></A>&nbsp;</TD>  </TR></TABLE></TD><TD ALIGN="right" VALIGN="top" ROWSPAN=3><EM></EM></TD></TR><TR><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">&nbsp;<A HREF="../../weka/classifiers/RegressionByDiscretization.html"><B>PREV CLASS</B></A>&nbsp;&nbsp;<A HREF="../../weka/classifiers/Stacking.html"><B>NEXT CLASS</B></A></FONT></TD><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">  <A HREF="../../index.html" TARGET="_top"><B>FRAMES</B></A>  &nbsp;&nbsp;<A HREF="SMO.html" TARGET="_top"><B>NO FRAMES</B></A></FONT></TD></TR><TR><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">  SUMMARY: &nbsp;INNER&nbsp;|&nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_summary">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_summary">METHOD</A></FONT></TD><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">DETAIL: &nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_detail">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_detail">METHOD</A></FONT></TD></TR></TABLE><!-- =========== END OF NAVBAR =========== --><HR><!-- ======== START OF CLASS DATA ======== --><H2><FONT SIZE="-1">weka.classifiers</FONT><BR>Class  SMO</H2><PRE>java.lang.Object  |  +--<A HREF="../../weka/classifiers/Classifier.html">weka.classifiers.Classifier</A>        |        +--<A HREF="../../weka/classifiers/DistributionClassifier.html">weka.classifiers.DistributionClassifier</A>              |              +--<B>weka.classifiers.SMO</B></PRE><DL><DT><B>All Implemented Interfaces:</B> <DD>java.lang.Cloneable, <A HREF="../../weka/core/OptionHandler.html">OptionHandler</A>, java.io.Serializable</DD></DL><HR><DL><DT>public class <B>SMO</B><DT>extends <A HREF="../../weka/classifiers/DistributionClassifier.html">DistributionClassifier</A><DT>implements <A HREF="../../weka/core/OptionHandler.html">OptionHandler</A></DL><P>Implements John C. Platt's sequential minimal optimization algorithm for training a support vector classifier using polynomial kernels. Transforms output of SVM into probabilities by applying a standard sigmoid function that is not fitted to the data. This implementation globally replaces all missing values and transforms nominal attributes into binary ones. For more information on the SMO algorithm, see<p> J. Platt (1998). <i>Fast Training of Support Vector Machines using Sequential Minimal Optimization</i>. Advances in Kernel Methods - Support Vector Learning, B. Sch鰈kopf, C. Burges, and A. Smola, eds., MIT Press. <p> S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy (2001). <i> Improvements to Platt's SMO Algorithm for SVM Classifier Design.  Neural Computation, 13(3), pp 637-649, 2001. <p> Note: for improved speed normalization should be turned off when operating on SparseInstances.<p> Valid options are:<p> -C num <br> The complexity constant C. (default 1)<p> -E num <br> The exponent for the polynomial kernel. (default 1)<p> -N <br> Don't normalize the training instances. <p> -L <br> Rescale kernel. <p> -O <br> Use lower-order terms. <p> -A num <br> Sets the size of the kernel cache. Should be a prime number.  (default 1000003) <p> -T num <br> Sets the tolerance parameter. (default 1.0e-3)<p> -P num <br> Sets the epsilon for round-off error. (default 1.0e-12)<p><P><DL><DT><B>See Also: </B><DD><A HREF="../../serialized-form.html#weka.classifiers.SMO">Serialized Form</A></DL><HR><P><!-- ======== INNER CLASS SUMMARY ======== --><!-- =========== FIELD SUMMARY =========== --><!-- ======== CONSTRUCTOR SUMMARY ======== --><A NAME="constructor_summary"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Constructor Summary</B></FONT></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#SMO()">SMO</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR></TABLE>&nbsp;<!-- ========== METHOD SUMMARY =========== --><A NAME="method_summary"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Method Summary</B></FONT></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#buildClassifier(weka.core.Instances)">buildClassifier</A></B>(<A HREF="../../weka/core/Instances.html">Instances</A>&nbsp;insts)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Method for building the classifier.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#distributionForInstance(weka.core.Instance)">distributionForInstance</A></B>(<A HREF="../../weka/core/Instance.html">Instance</A>&nbsp;inst)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Outputs the distribution for the given output.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#getC()">getC</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Get the value of C.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#getCacheSize()">getCacheSize</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Get the size of the kernel cache</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#getEpsilon()">getEpsilon</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Get the value of epsilon.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#getExponent()">getExponent</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Get the value of exponent.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#getLowerOrderTerms()">getLowerOrderTerms</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Check whether lower-order terms are being used.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#getNormalizeData()">getNormalizeData</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Check whether data is to be normalized.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#getOptions()">getOptions</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the current settings of the classifier.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#getRescaleKernel()">getRescaleKernel</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Check whether kernel is being rescaled.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#getToleranceParameter()">getToleranceParameter</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Get the value of tolerance parameter.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.util.Enumeration</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#listOptions()">listOptions</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns an enumeration describing the available options</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#main(java.lang.String[])">main</A></B>(java.lang.String[]&nbsp;argv)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Main method for testing this class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#setC(double)">setC</A></B>(double&nbsp;v)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Set the value of C.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#setCacheSize(int)">setCacheSize</A></B>(int&nbsp;v)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Set the value of the kernel cache.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#setEpsilon(double)">setEpsilon</A></B>(double&nbsp;v)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Set the value of epsilon.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#setExponent(double)">setExponent</A></B>(double&nbsp;v)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Set the value of exponent.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#setLowerOrderTerms(boolean)">setLowerOrderTerms</A></B>(boolean&nbsp;v)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Set whether lower-order terms are to be used.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#setNormalizeData(boolean)">setNormalizeData</A></B>(boolean&nbsp;v)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Set whether data is to be normalized.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#setOptions(java.lang.String[])">setOptions</A></B>(java.lang.String[]&nbsp;options)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Parses a given list of options.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#setRescaleKernel(boolean)">setRescaleKernel</A></B>(boolean&nbsp;v)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Set whether kernel is to be rescaled.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#setToleranceParameter(double)">setToleranceParameter</A></B>(double&nbsp;v)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Set the value of tolerance parameter.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/SMO.html#toString()">toString</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Prints out the classifier.</TD></TR></TABLE>&nbsp;<A NAME="methods_inherited_from_class_weka.classifiers.DistributionClassifier"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TD><B>Methods inherited from class weka.classifiers.<A HREF="../../weka/classifiers/DistributionClassifier.html">DistributionClassifier</A></B></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><A HREF="../../weka/classifiers/DistributionClassifier.html#classifyInstance(weka.core.Instance)">classifyInstance</A></CODE></TD></TR></TABLE>&nbsp;<A NAME="methods_inherited_from_class_weka.classifiers.Classifier"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TD><B>Methods inherited from class weka.classifiers.<A HREF="../../weka/classifiers/Classifier.html">Classifier</A></B></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><A HREF="../../weka/classifiers/Classifier.html#forName(java.lang.String, java.lang.String[])">forName</A>, <A HREF="../../weka/classifiers/Classifier.html#makeCopies(weka.classifiers.Classifier, int)">makeCopies</A></CODE></TD></TR></TABLE>&nbsp;<A NAME="methods_inherited_from_class_java.lang.Object"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TD><B>Methods inherited from class java.lang.Object</B></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE>clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait</CODE></TD></TR></TABLE>&nbsp;<P><!-- ============ FIELD DETAIL =========== --><!-- ========= CONSTRUCTOR DETAIL ======== --><A NAME="constructor_detail"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Constructor Detail</B></FONT></TD></TR></TABLE><A NAME="SMO()"><!-- --></A><H3>SMO</H3><PRE>public <B>SMO</B>()</PRE><DL></DL><!-- ============ METHOD DETAIL ========== --><A NAME="method_detail"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Method Detail</B></FONT></TD></TR>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -