⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lwr.html

📁 < 数据挖掘--实用机器学习技术及java实现> 一书结合数据挖掘和机器学习的知识,作者陈述了自动挖掘模式的基础理论,并且以java语言实现了具有代表性的各类数据挖掘方法.例如:class
💻 HTML
📖 第 1 页 / 共 2 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN""http://www.w3.org/TR/REC-html40/frameset.dtd"><!--NewPage--><HTML><HEAD><!-- Generated by javadoc on Wed Sep 04 10:31:49 CDT 2002 --><TITLE>: Class  LWR</TITLE><LINK REL ="stylesheet" TYPE="text/css" HREF="../../stylesheet.css" TITLE="Style"></HEAD><BODY BGCOLOR="white"><!-- ========== START OF NAVBAR ========== --><A NAME="navbar_top"><!-- --></A><TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0"><TR><TD COLSPAN=2 BGCOLOR="#EEEEFF" CLASS="NavBarCell1"><A NAME="navbar_top_firstrow"><!-- --></A><TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3">  <TR ALIGN="center" VALIGN="top">  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../overview-summary.html"><FONT CLASS="NavBarFont1"><B>Overview</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-summary.html"><FONT CLASS="NavBarFont1"><B>Package</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#FFFFFF" CLASS="NavBarCell1Rev"> &nbsp;<FONT CLASS="NavBarFont1Rev"><B>Class</B></FONT>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-tree.html"><FONT CLASS="NavBarFont1"><B>Tree</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../deprecated-list.html"><FONT CLASS="NavBarFont1"><B>Deprecated</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../index-all.html"><FONT CLASS="NavBarFont1"><B>Index</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../help-doc.html"><FONT CLASS="NavBarFont1"><B>Help</B></FONT></A>&nbsp;</TD>  </TR></TABLE></TD><TD ALIGN="right" VALIGN="top" ROWSPAN=3><EM></EM></TD></TR><TR><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">&nbsp;<A HREF="../../weka/classifiers/LogitBoost.html"><B>PREV CLASS</B></A>&nbsp;&nbsp;<A HREF="../../weka/classifiers/MetaCost.html"><B>NEXT CLASS</B></A></FONT></TD><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">  <A HREF="../../index.html" TARGET="_top"><B>FRAMES</B></A>  &nbsp;&nbsp;<A HREF="LWR.html" TARGET="_top"><B>NO FRAMES</B></A></FONT></TD></TR><TR><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">  SUMMARY: &nbsp;INNER&nbsp;|&nbsp;<A HREF="#field_summary">FIELD</A>&nbsp;|&nbsp;<A HREF="#constructor_summary">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_summary">METHOD</A></FONT></TD><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">DETAIL: &nbsp;<A HREF="#field_detail">FIELD</A>&nbsp;|&nbsp;<A HREF="#constructor_detail">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_detail">METHOD</A></FONT></TD></TR></TABLE><!-- =========== END OF NAVBAR =========== --><HR><!-- ======== START OF CLASS DATA ======== --><H2><FONT SIZE="-1">weka.classifiers</FONT><BR>Class  LWR</H2><PRE>java.lang.Object  |  +--<A HREF="../../weka/classifiers/Classifier.html">weka.classifiers.Classifier</A>        |        +--<B>weka.classifiers.LWR</B></PRE><DL><DT><B>All Implemented Interfaces:</B> <DD>java.lang.Cloneable, <A HREF="../../weka/core/OptionHandler.html">OptionHandler</A>, java.io.Serializable, <A HREF="../../weka/classifiers/UpdateableClassifier.html">UpdateableClassifier</A>, <A HREF="../../weka/core/WeightedInstancesHandler.html">WeightedInstancesHandler</A></DD></DL><HR><DL><DT>public class <B>LWR</B><DT>extends <A HREF="../../weka/classifiers/Classifier.html">Classifier</A><DT>implements <A HREF="../../weka/core/OptionHandler.html">OptionHandler</A>, <A HREF="../../weka/classifiers/UpdateableClassifier.html">UpdateableClassifier</A>, <A HREF="../../weka/core/WeightedInstancesHandler.html">WeightedInstancesHandler</A></DL><P>Locally-weighted regression. Uses an instance-based algorithm to assign instance weights which are then used by a linear regression model.  For more information, see<p> Atkeson, C., A. Moore, and S. Schaal (1996) <i>Locally weighted learning</i> <a href="ftp://ftp.cc.gatech.edu/pub/people/cga/air1.ps.gz">download  postscript</a>. <p> Valid options are:<p> -D <br> Produce debugging output. <p> -K num <br> Set the number of neighbours used for setting kernel bandwidth. (default all) <p> -W num <br> Set the weighting kernel shape to use. 1 = Inverse, 2 = Gaussian. (default 0 = Linear) <p><P><DL><DT><B>See Also: </B><DD><A HREF="../../serialized-form.html#weka.classifiers.LWR">Serialized Form</A></DL><HR><P><!-- ======== INNER CLASS SUMMARY ======== --><!-- =========== FIELD SUMMARY =========== --><A NAME="field_summary"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Field Summary</B></FONT></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected static&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#GAUSS">GAUSS</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected static&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#INVERSE">INVERSE</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected static&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#LINEAR">LINEAR</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#m_Debug">m_Debug</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;True if debugging output should be printed</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#m_kNN">m_kNN</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The number of neighbours used to select the kernel bandwidth</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;double[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#m_Max">m_Max</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The maximum values for numeric attributes.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;double[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#m_Min">m_Min</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The minimum values for numeric attributes.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;<A HREF="../../weka/core/Instances.html">Instances</A></CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#m_Train">m_Train</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The training instances used for classification.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#m_UseAllK">m_UseAllK</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;True if m_kNN should be set to all instances</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#m_WeightKernel">m_WeightKernel</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The weighting kernel method currently selected</TD></TR></TABLE>&nbsp;<!-- ======== CONSTRUCTOR SUMMARY ======== --><A NAME="constructor_summary"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Constructor Summary</B></FONT></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#LWR()">LWR</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR></TABLE>&nbsp;<!-- ========== METHOD SUMMARY =========== --><A NAME="method_summary"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Method Summary</B></FONT></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#buildClassifier(weka.core.Instances)">buildClassifier</A></B>(<A HREF="../../weka/core/Instances.html">Instances</A>&nbsp;instances)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Generates the classifier.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#classifyInstance(weka.core.Instance)">classifyInstance</A></B>(<A HREF="../../weka/core/Instance.html">Instance</A>&nbsp;instance)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Predicts the class value for the given test instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#getAttributeMax(int)">getAttributeMax</A></B>(int&nbsp;index)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets an attributes maximum observed value</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#getAttributeMin(int)">getAttributeMin</A></B>(int&nbsp;index)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets an attributes minimum observed value</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#getDebug()">getDebug</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;SGts whether debugging output should be produced</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#getKNN()">getKNN</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the number of neighbours used for kernel bandwidth setting.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#getOptions()">getOptions</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the current settings of the classifier.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#getWeightingKernel()">getWeightingKernel</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the kernel weighting method to use.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.util.Enumeration</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#listOptions()">listOptions</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns an enumeration describing the available options</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#main(java.lang.String[])">main</A></B>(java.lang.String[]&nbsp;argv)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Main method for testing this class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#setDebug(boolean)">setDebug</A></B>(boolean&nbsp;debug)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Sets whether debugging output should be produced</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#setKNN(int)">setKNN</A></B>(int&nbsp;knn)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Sets the number of neighbours used for kernel bandwidth setting.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#setOptions(java.lang.String[])">setOptions</A></B>(java.lang.String[]&nbsp;options)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Parses a given list of options.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#setWeightingKernel(int)">setWeightingKernel</A></B>(int&nbsp;kernel)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Sets the kernel weighting method to use.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#toString()">toString</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns a description of this classifier.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/LWR.html#updateClassifier(weka.core.Instance)">updateClassifier</A></B>(<A HREF="../../weka/core/Instance.html">Instance</A>&nbsp;instance)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Adds the supplied instance to the training set</TD></TR></TABLE>&nbsp;<A NAME="methods_inherited_from_class_weka.classifiers.Classifier"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TD><B>Methods inherited from class weka.classifiers.<A HREF="../../weka/classifiers/Classifier.html">Classifier</A></B></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><A HREF="../../weka/classifiers/Classifier.html#forName(java.lang.String, java.lang.String[])">forName</A>, <A HREF="../../weka/classifiers/Classifier.html#makeCopies(weka.classifiers.Classifier, int)">makeCopies</A></CODE></TD></TR></TABLE>&nbsp;<A NAME="methods_inherited_from_class_java.lang.Object"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TD><B>Methods inherited from class java.lang.Object</B></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE>clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait</CODE></TD></TR></TABLE>&nbsp;<P><!-- ============ FIELD DETAIL =========== --><A NAME="field_detail"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Field Detail</B></FONT></TD></TR></TABLE><A NAME="m_Train"><!-- --></A><H3>m_Train</H3><PRE>protected <A HREF="../../weka/core/Instances.html">Instances</A> <B>m_Train</B></PRE><DL><DD>The training instances used for classification.</DL><HR><A NAME="m_Min"><!-- --></A><H3>m_Min</H3><PRE>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -