⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ibk.html

📁 < 数据挖掘--实用机器学习技术及java实现> 一书结合数据挖掘和机器学习的知识,作者陈述了自动挖掘模式的基础理论,并且以java语言实现了具有代表性的各类数据挖掘方法.例如:class
💻 HTML
📖 第 1 页 / 共 3 页
字号:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN""http://www.w3.org/TR/REC-html40/frameset.dtd"><!--NewPage--><HTML><HEAD><!-- Generated by javadoc on Wed Sep 04 10:31:49 CDT 2002 --><TITLE>: Class  IBk</TITLE><LINK REL ="stylesheet" TYPE="text/css" HREF="../../stylesheet.css" TITLE="Style"></HEAD><BODY BGCOLOR="white"><!-- ========== START OF NAVBAR ========== --><A NAME="navbar_top"><!-- --></A><TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0"><TR><TD COLSPAN=2 BGCOLOR="#EEEEFF" CLASS="NavBarCell1"><A NAME="navbar_top_firstrow"><!-- --></A><TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3">  <TR ALIGN="center" VALIGN="top">  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../overview-summary.html"><FONT CLASS="NavBarFont1"><B>Overview</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-summary.html"><FONT CLASS="NavBarFont1"><B>Package</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#FFFFFF" CLASS="NavBarCell1Rev"> &nbsp;<FONT CLASS="NavBarFont1Rev"><B>Class</B></FONT>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-tree.html"><FONT CLASS="NavBarFont1"><B>Tree</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../deprecated-list.html"><FONT CLASS="NavBarFont1"><B>Deprecated</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../index-all.html"><FONT CLASS="NavBarFont1"><B>Index</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../help-doc.html"><FONT CLASS="NavBarFont1"><B>Help</B></FONT></A>&nbsp;</TD>  </TR></TABLE></TD><TD ALIGN="right" VALIGN="top" ROWSPAN=3><EM></EM></TD></TR><TR><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">&nbsp;<A HREF="../../weka/classifiers/IB1.html"><B>PREV CLASS</B></A>&nbsp;&nbsp;<A HREF="../../weka/classifiers/Id3.html"><B>NEXT CLASS</B></A></FONT></TD><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">  <A HREF="../../index.html" TARGET="_top"><B>FRAMES</B></A>  &nbsp;&nbsp;<A HREF="IBk.html" TARGET="_top"><B>NO FRAMES</B></A></FONT></TD></TR><TR><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">  SUMMARY: &nbsp;INNER&nbsp;|&nbsp;<A HREF="#field_summary">FIELD</A>&nbsp;|&nbsp;<A HREF="#constructor_summary">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_summary">METHOD</A></FONT></TD><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">DETAIL: &nbsp;<A HREF="#field_detail">FIELD</A>&nbsp;|&nbsp;<A HREF="#constructor_detail">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_detail">METHOD</A></FONT></TD></TR></TABLE><!-- =========== END OF NAVBAR =========== --><HR><!-- ======== START OF CLASS DATA ======== --><H2><FONT SIZE="-1">weka.classifiers</FONT><BR>Class  IBk</H2><PRE>java.lang.Object  |  +--<A HREF="../../weka/classifiers/Classifier.html">weka.classifiers.Classifier</A>        |        +--<A HREF="../../weka/classifiers/DistributionClassifier.html">weka.classifiers.DistributionClassifier</A>              |              +--<B>weka.classifiers.IBk</B></PRE><DL><DT><B>All Implemented Interfaces:</B> <DD>java.lang.Cloneable, <A HREF="../../weka/core/OptionHandler.html">OptionHandler</A>, java.io.Serializable, <A HREF="../../weka/classifiers/UpdateableClassifier.html">UpdateableClassifier</A>, <A HREF="../../weka/core/WeightedInstancesHandler.html">WeightedInstancesHandler</A></DD></DL><HR><DL><DT>public class <B>IBk</B><DT>extends <A HREF="../../weka/classifiers/DistributionClassifier.html">DistributionClassifier</A><DT>implements <A HREF="../../weka/core/OptionHandler.html">OptionHandler</A>, <A HREF="../../weka/classifiers/UpdateableClassifier.html">UpdateableClassifier</A>, <A HREF="../../weka/core/WeightedInstancesHandler.html">WeightedInstancesHandler</A></DL><P><i>K</i>-nearest neighbour classifier. For more information, see <p>  Aha, D., and D. Kibler (1991) "Instance-based learning algorithms", <i>Machine Learning</i>, vol.6, pp. 37-66.<p> Valid options are:<p> -K num <br> Set the number of nearest neighbors to use in prediction (default 1) <p> -W num <br> Set a fixed window size for incremental train/testing. As new training instances are added, oldest instances are removed to maintain the number of training instances at this size. (default no window) <p> -D <br> Neighbors will be weighted by the inverse of their distance when voting. (default equal weighting) <p> -F <br> Neighbors will be weighted by their similarity when voting. (default equal weighting) <p> -X <br> Selects the number of neighbors to use by hold-one-out cross validation, with an upper limit given by the -K option. <p> -S <br> When k is selected by cross-validation for numeric class attributes, minimize mean-squared error. (default mean absolute error) <p> -N <br> Turns off normalization. <p><P><DL><DT><B>See Also: </B><DD><A HREF="../../serialized-form.html#weka.classifiers.IBk">Serialized Form</A></DL><HR><P><!-- ======== INNER CLASS SUMMARY ======== --><!-- =========== FIELD SUMMARY =========== --><A NAME="field_summary"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Field Summary</B></FONT></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#m_ClassType">m_ClassType</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The class attribute type</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#m_CrossValidate">m_CrossValidate</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Whether to select k by cross validation</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#m_DistanceWeighting">m_DistanceWeighting</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Whether the neighbours should be distance-weighted</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#m_DontNormalize">m_DontNormalize</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;True if normalization is turned off</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#m_kNN">m_kNN</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The number of neighbours to use for classification (currently)</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#m_kNNUpper">m_kNNUpper</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The value of kNN provided by the user.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#m_kNNValid">m_kNNValid</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Whether the value of k selected by cross validation has been invalidated by a change in the training instances</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;double[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#m_Max">m_Max</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The maximum values for numeric attributes.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#m_MeanSquared">m_MeanSquared</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Whether to minimise mean squared error rather than mean absolute error when cross-validating on numeric prediction tasks</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;double[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#m_Min">m_Min</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The minimum values for numeric attributes.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#m_NumAttributesUsed">m_NumAttributesUsed</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The number of attributes the contribute to a prediction</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#m_NumClasses">m_NumClasses</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The number of class values (or 1 if predicting numeric)</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;<A HREF="../../weka/core/Instances.html">Instances</A></CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#m_Train">m_Train</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The training instances used for classification.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#m_WindowSize">m_WindowSize</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The maximum number of training instances allowed.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;<A HREF="../../weka/core/Tag.html">Tag</A>[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#TAGS_WEIGHTING">TAGS_WEIGHTING</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#WEIGHT_INVERSE">WEIGHT_INVERSE</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#WEIGHT_NONE">WEIGHT_NONE</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#WEIGHT_SIMILARITY">WEIGHT_SIMILARITY</A></B></CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR></TABLE>&nbsp;<!-- ======== CONSTRUCTOR SUMMARY ======== --><A NAME="constructor_summary"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Constructor Summary</B></FONT></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#IBk()">IBk</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;IB1 classifer.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#IBk(int)">IBk</A></B>(int&nbsp;k)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;IBk classifier.</TD></TR></TABLE>&nbsp;<!-- ========== METHOD SUMMARY =========== --><A NAME="method_summary"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Method Summary</B></FONT></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#buildClassifier(weka.core.Instances)">buildClassifier</A></B>(<A HREF="../../weka/core/Instances.html">Instances</A>&nbsp;instances)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Generates the classifier.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#distributionForInstance(weka.core.Instance)">distributionForInstance</A></B>(<A HREF="../../weka/core/Instance.html">Instance</A>&nbsp;instance)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Calculates the class membership probabilities for the given test instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#getAttributeMax(int)">getAttributeMax</A></B>(int&nbsp;index)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Get an attributes maximum observed value</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#getAttributeMin(int)">getAttributeMin</A></B>(int&nbsp;index)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Get an attributes minimum observed value</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#getCrossValidate()">getCrossValidate</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets whether hold-one-out cross-validation will be used to select the best k value</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#getDebug()">getDebug</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Get the value of Debug.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;<A HREF="../../weka/core/SelectedTag.html">SelectedTag</A></CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#getDistanceWeighting()">getDistanceWeighting</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the distance weighting method used.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#getKNN()">getKNN</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the number of neighbours the learner will use.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#getMeanSquared()">getMeanSquared</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets whether the mean squared error is used rather than mean absolute error when doing cross-validation.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#getNoNormalization()">getNoNormalization</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets whether normalization is turned off.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/IBk.html#getNumTraining()">getNumTraining</A></B>()</CODE>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -