⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 twoclassstats.html

📁 < 数据挖掘--实用机器学习技术及java实现> 一书结合数据挖掘和机器学习的知识,作者陈述了自动挖掘模式的基础理论,并且以java语言实现了具有代表性的各类数据挖掘方法.例如:class
💻 HTML
📖 第 1 页 / 共 2 页
字号:
<A NAME="TwoClassStats(double, double, double, double)"><!-- --></A><H3>TwoClassStats</H3><PRE>public <B>TwoClassStats</B>(double&nbsp;tp,                     double&nbsp;fp,                     double&nbsp;tn,                     double&nbsp;fn)</PRE><DL><DD>Creates the TwoClassStats with the given initial performance values.<DD><DL><DT><B>Parameters:</B><DD><CODE>tp</CODE> - the number of correctly classified positives<DD><CODE>fp</CODE> - the number of incorrectly classified negatives<DD><CODE>tn</CODE> - the number of correctly classified negatives<DD><CODE>fn</CODE> - the number of incorrectly classified positives</DL></DD></DL><!-- ============ METHOD DETAIL ========== --><A NAME="method_detail"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Method Detail</B></FONT></TD></TR></TABLE><A NAME="setTruePositive(double)"><!-- --></A><H3>setTruePositive</H3><PRE>public void <B>setTruePositive</B>(double&nbsp;tp)</PRE><DL><DD>Sets the number of positive instances predicted as positive</DL><HR><A NAME="setFalsePositive(double)"><!-- --></A><H3>setFalsePositive</H3><PRE>public void <B>setFalsePositive</B>(double&nbsp;fp)</PRE><DL><DD>Sets the number of negative instances predicted as positive</DL><HR><A NAME="setTrueNegative(double)"><!-- --></A><H3>setTrueNegative</H3><PRE>public void <B>setTrueNegative</B>(double&nbsp;tn)</PRE><DL><DD>Sets the number of negative instances predicted as negative</DL><HR><A NAME="setFalseNegative(double)"><!-- --></A><H3>setFalseNegative</H3><PRE>public void <B>setFalseNegative</B>(double&nbsp;fn)</PRE><DL><DD>Sets the number of positive instances predicted as negative</DL><HR><A NAME="getTruePositive()"><!-- --></A><H3>getTruePositive</H3><PRE>public double <B>getTruePositive</B>()</PRE><DL><DD>Gets the number of positive instances predicted as positive</DL><HR><A NAME="getFalsePositive()"><!-- --></A><H3>getFalsePositive</H3><PRE>public double <B>getFalsePositive</B>()</PRE><DL><DD>Gets the number of negative instances predicted as positive</DL><HR><A NAME="getTrueNegative()"><!-- --></A><H3>getTrueNegative</H3><PRE>public double <B>getTrueNegative</B>()</PRE><DL><DD>Gets the number of negative instances predicted as negative</DL><HR><A NAME="getFalseNegative()"><!-- --></A><H3>getFalseNegative</H3><PRE>public double <B>getFalseNegative</B>()</PRE><DL><DD>Gets the number of positive instances predicted as negative</DL><HR><A NAME="getTruePositiveRate()"><!-- --></A><H3>getTruePositiveRate</H3><PRE>public double <B>getTruePositiveRate</B>()</PRE><DL><DD>Calculate the true positive rate.  This is defined as<p> <pre> correctly classified positives ------------------------------       total positives </pre><DD><DL><DT><B>Returns:</B><DD>the true positive rate</DL></DD></DL><HR><A NAME="getFalsePositiveRate()"><!-- --></A><H3>getFalsePositiveRate</H3><PRE>public double <B>getFalsePositiveRate</B>()</PRE><DL><DD>Calculate the false positive rate.  This is defined as<p> <pre> incorrectly classified negatives --------------------------------        total negatives </pre><DD><DL><DT><B>Returns:</B><DD>the false positive rate</DL></DD></DL><HR><A NAME="getPrecision()"><!-- --></A><H3>getPrecision</H3><PRE>public double <B>getPrecision</B>()</PRE><DL><DD>Calculate the precision.  This is defined as<p> <pre> correctly classified positives ------------------------------  total predicted as positive </pre><DD><DL><DT><B>Returns:</B><DD>the precision</DL></DD></DL><HR><A NAME="getRecall()"><!-- --></A><H3>getRecall</H3><PRE>public double <B>getRecall</B>()</PRE><DL><DD>Calculate the recall.  This is defined as<p> <pre> correctly classified positives ------------------------------       total positives </pre><p> (Which is also the same as the truePositiveRate.)<DD><DL><DT><B>Returns:</B><DD>the recall</DL></DD></DL><HR><A NAME="getFMeasure()"><!-- --></A><H3>getFMeasure</H3><PRE>public double <B>getFMeasure</B>()</PRE><DL><DD>Calculate the F-Measure.  This is defined as<p> <pre> 2 * recall * precision ----------------------   recall + precision </pre><DD><DL><DT><B>Returns:</B><DD>the F-Measure</DL></DD></DL><HR><A NAME="getFallout()"><!-- --></A><H3>getFallout</H3><PRE>public double <B>getFallout</B>()</PRE><DL><DD>Calculate the fallout.  This is defined as<p> <pre> incorrectly classified negatives --------------------------------   total predicted as positive </pre><DD><DL><DT><B>Returns:</B><DD>the fallout</DL></DD></DL><HR><A NAME="getConfusionMatrix()"><!-- --></A><H3>getConfusionMatrix</H3><PRE>public <A HREF="../../../weka/classifiers/evaluation/ConfusionMatrix.html">ConfusionMatrix</A> <B>getConfusionMatrix</B>()</PRE><DL><DD>Generates a <code>ConfusionMatrix</code> representing the current two-class statistics, using class names "negative" and "positive".<DD><DL><DT><B>Returns:</B><DD>a <code>ConfusionMatrix</code>.</DL></DD></DL><HR><A NAME="toString()"><!-- --></A><H3>toString</H3><PRE>public java.lang.String <B>toString</B>()</PRE><DL><DD>Returns a string containing the various performance measures for the current object<DD><DL><DT><B>Overrides:</B><DD><CODE>toString</CODE> in class <CODE>java.lang.Object</CODE></DL></DD></DL><!-- ========= END OF CLASS DATA ========= --><HR><!-- ========== START OF NAVBAR ========== --><A NAME="navbar_bottom"><!-- --></A><TABLE BORDER="0" WIDTH="100%" CELLPADDING="1" CELLSPACING="0"><TR><TD COLSPAN=2 BGCOLOR="#EEEEFF" CLASS="NavBarCell1"><A NAME="navbar_bottom_firstrow"><!-- --></A><TABLE BORDER="0" CELLPADDING="0" CELLSPACING="3">  <TR ALIGN="center" VALIGN="top">  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../overview-summary.html"><FONT CLASS="NavBarFont1"><B>Overview</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-summary.html"><FONT CLASS="NavBarFont1"><B>Package</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#FFFFFF" CLASS="NavBarCell1Rev"> &nbsp;<FONT CLASS="NavBarFont1Rev"><B>Class</B></FONT>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="package-tree.html"><FONT CLASS="NavBarFont1"><B>Tree</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../deprecated-list.html"><FONT CLASS="NavBarFont1"><B>Deprecated</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../index-all.html"><FONT CLASS="NavBarFont1"><B>Index</B></FONT></A>&nbsp;</TD>  <TD BGCOLOR="#EEEEFF" CLASS="NavBarCell1">    <A HREF="../../../help-doc.html"><FONT CLASS="NavBarFont1"><B>Help</B></FONT></A>&nbsp;</TD>  </TR></TABLE></TD><TD ALIGN="right" VALIGN="top" ROWSPAN=3><EM></EM></TD></TR><TR><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">&nbsp;<A HREF="../../../weka/classifiers/evaluation/ThresholdCurve.html"><B>PREV CLASS</B></A>&nbsp;&nbsp;NEXT CLASS</FONT></TD><TD BGCOLOR="white" CLASS="NavBarCell2"><FONT SIZE="-2">  <A HREF="../../../index.html" TARGET="_top"><B>FRAMES</B></A>  &nbsp;&nbsp;<A HREF="TwoClassStats.html" TARGET="_top"><B>NO FRAMES</B></A></FONT></TD></TR><TR><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">  SUMMARY: &nbsp;INNER&nbsp;|&nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_summary">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_summary">METHOD</A></FONT></TD><TD VALIGN="top" CLASS="NavBarCell3"><FONT SIZE="-2">DETAIL: &nbsp;FIELD&nbsp;|&nbsp;<A HREF="#constructor_detail">CONSTR</A>&nbsp;|&nbsp;<A HREF="#method_detail">METHOD</A></FONT></TD></TR></TABLE><!-- =========== END OF NAVBAR =========== --><HR></BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -