📄 adtree.html
字号:
<BR> Parses a given list of options.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#setRandomSeed(int)">setRandomSeed</A></B>(int seed)</CODE><BR> Sets random seed for a random walk.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#setSaveInstanceData(boolean)">setSaveInstanceData</A></B>(boolean v)</CODE><BR> Sets whether the tree is to save instance data.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#setSearchPath(weka.core.SelectedTag)">setSearchPath</A></B>(<A HREF="../../../weka/core/SelectedTag.html">SelectedTag</A> newMethod)</CODE><BR> Sets the method of searching the tree for a new insertion.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#toString()">toString</A></B>()</CODE><BR> Returns a description of the classifier.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#toString(weka.classifiers.adtree.PredictionNode, int)">toString</A></B>(<A HREF="../../../weka/classifiers/adtree/PredictionNode.html">PredictionNode</A> currentNode, int level)</CODE><BR> Traverses the tree, forming a string that describes it.</TD></TR></TABLE> <A NAME="methods_inherited_from_class_weka.classifiers.DistributionClassifier"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TD><B>Methods inherited from class weka.classifiers.<A HREF="../../../weka/classifiers/DistributionClassifier.html">DistributionClassifier</A></B></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><A HREF="../../../weka/classifiers/DistributionClassifier.html#classifyInstance(weka.core.Instance)">classifyInstance</A></CODE></TD></TR></TABLE> <A NAME="methods_inherited_from_class_weka.classifiers.Classifier"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TD><B>Methods inherited from class weka.classifiers.<A HREF="../../../weka/classifiers/Classifier.html">Classifier</A></B></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><A HREF="../../../weka/classifiers/Classifier.html#forName(java.lang.String, java.lang.String[])">forName</A>, <A HREF="../../../weka/classifiers/Classifier.html#makeCopies(weka.classifiers.Classifier, int)">makeCopies</A></CODE></TD></TR></TABLE> <A NAME="methods_inherited_from_class_java.lang.Object"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TD><B>Methods inherited from class java.lang.Object</B></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE>equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait</CODE></TD></TR></TABLE> <P><!-- ============ FIELD DETAIL =========== --><A NAME="field_detail"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Field Detail</B></FONT></TD></TR></TABLE><A NAME="SEARCHPATH_ALL"><!-- --></A><H3>SEARCHPATH_ALL</H3><PRE>public static final int <B>SEARCHPATH_ALL</B></PRE><DL><DD>The search modes</DL><HR><A NAME="SEARCHPATH_HEAVIEST"><!-- --></A><H3>SEARCHPATH_HEAVIEST</H3><PRE>public static final int <B>SEARCHPATH_HEAVIEST</B></PRE><DL></DL><HR><A NAME="SEARCHPATH_ZPURE"><!-- --></A><H3>SEARCHPATH_ZPURE</H3><PRE>public static final int <B>SEARCHPATH_ZPURE</B></PRE><DL></DL><HR><A NAME="SEARCHPATH_RANDOM"><!-- --></A><H3>SEARCHPATH_RANDOM</H3><PRE>public static final int <B>SEARCHPATH_RANDOM</B></PRE><DL></DL><HR><A NAME="TAGS_SEARCHPATH"><!-- --></A><H3>TAGS_SEARCHPATH</H3><PRE>public static final <A HREF="../../../weka/core/Tag.html">Tag</A>[] <B>TAGS_SEARCHPATH</B></PRE><DL></DL><HR><A NAME="m_trainInstances"><!-- --></A><H3>m_trainInstances</H3><PRE>protected <A HREF="../../../weka/core/Instances.html">Instances</A> <B>m_trainInstances</B></PRE><DL><DD>The instances used to train the tree</DL><HR><A NAME="m_root"><!-- --></A><H3>m_root</H3><PRE>protected <A HREF="../../../weka/classifiers/adtree/PredictionNode.html">PredictionNode</A> <B>m_root</B></PRE><DL><DD>The root of the tree</DL><HR><A NAME="m_random"><!-- --></A><H3>m_random</H3><PRE>protected java.util.Random <B>m_random</B></PRE><DL><DD>The random number generator - used for the random search heuristic</DL><HR><A NAME="m_lastAddedSplitNum"><!-- --></A><H3>m_lastAddedSplitNum</H3><PRE>protected int <B>m_lastAddedSplitNum</B></PRE><DL><DD>The number of the last splitter added to the tree</DL><HR><A NAME="m_numericAttIndices"><!-- --></A><H3>m_numericAttIndices</H3><PRE>protected int[] <B>m_numericAttIndices</B></PRE><DL><DD>An array containing the inidices to the numeric attributes in the data</DL><HR><A NAME="m_nominalAttIndices"><!-- --></A><H3>m_nominalAttIndices</H3><PRE>protected int[] <B>m_nominalAttIndices</B></PRE><DL><DD>An array containing the inidices to the nominal attributes in the data</DL><HR><A NAME="m_trainTotalWeight"><!-- --></A><H3>m_trainTotalWeight</H3><PRE>protected double <B>m_trainTotalWeight</B></PRE><DL><DD>The total weight of the instances - used to speed Z calculations</DL><HR><A NAME="m_posTrainInstances"><!-- --></A><H3>m_posTrainInstances</H3><PRE>protected <A HREF="../../../weka/classifiers/adtree/ReferenceInstances.html">ReferenceInstances</A> <B>m_posTrainInstances</B></PRE><DL><DD>The training instances with positive class - referencing the training dataset</DL><HR><A NAME="m_negTrainInstances"><!-- --></A><H3>m_negTrainInstances</H3><PRE>protected <A HREF="../../../weka/classifiers/adtree/ReferenceInstances.html">ReferenceInstances</A> <B>m_negTrainInstances</B></PRE><DL><DD>The training instances with negative class - referencing the training dataset</DL><HR><A NAME="m_search_bestInsertionNode"><!-- --></A><H3>m_search_bestInsertionNode</H3><PRE>protected <A HREF="../../../weka/classifiers/adtree/PredictionNode.html">PredictionNode</A> <B>m_search_bestInsertionNode</B></PRE><DL><DD>The best node to insert under, as found so far by the latest search</DL><HR><A NAME="m_search_bestSplitter"><!-- --></A><H3>m_search_bestSplitter</H3><PRE>protected <A HREF="../../../weka/classifiers/adtree/Splitter.html">Splitter</A> <B>m_search_bestSplitter</B></PRE><DL><DD>The best splitter to insert, as found so far by the latest search</DL><HR><A NAME="m_search_smallestZ"><!-- --></A><H3>m_search_smallestZ</H3><PRE>protected double <B>m_search_smallestZ</B></PRE><DL><DD>The smallest Z value found so far by the latest search</DL><HR><A NAME="m_search_bestPathPosInstances"><!-- --></A><H3>m_search_bestPathPosInstances</H3><PRE>protected <A HREF="../../../weka/core/Instances.html">Instances</A> <B>m_search_bestPathPosInstances</B></PRE><DL><DD>The positive instances that apply to the best path found so far</DL><HR><A NAME="m_search_bestPathNegInstances"><!-- --></A><H3>m_search_bestPathNegInstances</H3><PRE>protected <A HREF="../../../weka/core/Instances.html">Instances</A> <B>m_search_bestPathNegInstances</B></PRE><DL><DD>The negative instances that apply to the best path found so far</DL><HR><A NAME="m_nodesExpanded"><!-- --></A><H3>m_nodesExpanded</H3><PRE>protected int <B>m_nodesExpanded</B></PRE><DL><DD>Statistics - the number of prediction nodes investigated during search</DL><HR><A NAME="m_examplesCounted"><!-- --></A><H3>m_examplesCounted</H3><PRE>protected int <B>m_examplesCounted</B></PRE><DL><DD>Statistics - the number of instances processed during search</DL><HR><A NAME="m_boostingIterations"><!-- --></A><H3>m_boostingIterations</H3><PRE>protected int <B>m_boostingIterations</B></PRE><DL><DD>Option - the number of boosting iterations o perform</DL><HR><A NAME="m_searchPath"><!-- --></A><H3>m_searchPath</H3><PRE>protected int <B>m_searchPath</B></PRE><DL><DD>Option - the search mode</DL><HR><A NAME="m_randomSeed"><!-- --></A><H3>m_randomSeed</H3><PRE>protected int <B>m_randomSeed</B></PRE><DL><DD>Option - the seed to use for a random search</DL><HR><A NAME="m_saveInstanceData"><!-- --></A><H3>m_saveInstanceData</H3><PRE>protected boolean <B>m_saveInstanceData</B></PRE><DL><DD>Option - whether the tree should remember the instance data</DL><!-- ========= CONSTRUCTOR DETAIL ======== --><A NAME="constructor_detail"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Constructor Detail</B></FONT></TD></TR></TABLE><A NAME="ADTree()"><!-- --></A><H3>ADTree</H3><PRE>public <B>ADTree</B>()</PRE><DL></DL><!-- ============ METHOD DETAIL ========== --><A NAME="method_detail"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Method Detail</B></FONT></TD></TR></TABLE><A NAME="initClassifier(weka.core.Instances)"><!-- --></A><H3>initClassifier</H3><PRE>public void <B>initClassifier</B>(<A HREF="../../../weka/core/Instances.html">Instances</A> instances) throws java.lang.Exception</PRE><DL><DD>Sets up the tree ready to be trained, using two-class optimized method.<DD><DL><DT><B>Specified by: </B><DD><CODE><A HREF="../../../weka/classifiers/IterativeClassifier.html#initClassifier(weka.core.Instances)">initClassifier</A></CODE> in interface <CODE><A HREF="../../../weka/classifiers/IterativeClassifier.html">IterativeClassifier</A></CODE></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>instances</CODE> - the instances to train the tree with<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if training data is unsuitable</DL></DD></DL><HR>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -