⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 adtree.html

📁 < 数据挖掘--实用机器学习技术及java实现> 一书结合数据挖掘和机器学习的知识,作者陈述了自动挖掘模式的基础理论,并且以java语言实现了具有代表性的各类数据挖掘方法.例如:class
💻 HTML
📖 第 1 页 / 共 5 页
字号:
<TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#ADTree()">ADTree</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR></TABLE>&nbsp;<!-- ========== METHOD SUMMARY =========== --><A NAME="method_summary"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=2><FONT SIZE="+2"><B>Method Summary</B></FONT></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#boost()">boost</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Performs a single boosting iteration, using two-class optimized method.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#buildClassifier(weka.core.Instances)">buildClassifier</A></B>(<A HREF="../../../weka/core/Instances.html">Instances</A>&nbsp;instances)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Builds a classifier for a set of instances.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.Object</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#clone()">clone</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Creates a clone that is identical to the current tree, but is independent.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#distributionForInstance(weka.core.Instance)">distributionForInstance</A></B>(<A HREF="../../../weka/core/Instance.html">Instance</A>&nbsp;instance)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the class probability distribution for an instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#done()">done</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Frees memory that is no longer needed for a final model - will no longer be able to increment the classifier after calling this.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.util.Enumeration</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#enumerateMeasures()">enumerateMeasures</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns an enumeration of the additional measure names.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#getMeasure(java.lang.String)">getMeasure</A></B>(java.lang.String&nbsp;additionalMeasureName)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the value of the named measure.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#getNumOfBoostingIterations()">getNumOfBoostingIterations</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the number of boosting iterations.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#getOptions()">getOptions</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the current settings of ADTree.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#getRandom(int)">getRandom</A></B>(int&nbsp;max)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the next random value.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#getRandomSeed()">getRandomSeed</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets random seed for a random walk.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;boolean</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#getSaveInstanceData()">getSaveInstanceData</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets whether the tree is to save instance data.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;<A HREF="../../../weka/core/SelectedTag.html">SelectedTag</A></CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#getSearchPath()">getSearchPath</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the method of searching the tree for a new insertion.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#globalInfo()">globalInfo</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#graph()">graph</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns graph describing the tree.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#graphTraverse(weka.classifiers.adtree.PredictionNode, java.lang.StringBuffer, int, int, weka.core.Instances)">graphTraverse</A></B>(<A HREF="../../../weka/classifiers/adtree/PredictionNode.html">PredictionNode</A>&nbsp;currentNode,              java.lang.StringBuffer&nbsp;text,              int&nbsp;splitOrder,              int&nbsp;predOrder,              <A HREF="../../../weka/core/Instances.html">Instances</A>&nbsp;instances)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Traverses the tree, graphing each node.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#initClassifier(weka.core.Instances)">initClassifier</A></B>(<A HREF="../../../weka/core/Instances.html">Instances</A>&nbsp;instances)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Sets up the tree ready to be trained, using two-class optimized method.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#legend()">legend</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the legend of the tree, describing how results are to be interpreted.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.util.Enumeration</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#listOptions()">listOptions</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns an enumeration describing the available options.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#main(java.lang.String[])">main</A></B>(java.lang.String[]&nbsp;argv)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Main method for testing this class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#measureExamplesProcessed()">measureExamplesProcessed</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the number of examples "counted".</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#measureNodesExpanded()">measureNodesExpanded</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the number of nodes expanded.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#measureNumLeaves()">measureNumLeaves</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Calls measure function for leaf size - the number of prediction nodes.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#measureNumPredictionLeaves()">measureNumPredictionLeaves</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Calls measure function for prediction leaf size - the number of prediction nodes without children.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#measureTreeSize()">measureTreeSize</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Calls measure function for tree size - the total number of nodes.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#merge(weka.classifiers.adtree.ADTree)">merge</A></B>(<A HREF="../../../weka/classifiers/adtree/ADTree.html">ADTree</A>&nbsp;mergeWith)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Merges two trees together.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#next(int)">next</A></B>(int&nbsp;iteration)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Performs one iteration.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#nextSplitAddedOrder()">nextSplitAddedOrder</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the next number in the order that splitter nodes have been added to the tree, and records that a new splitter has been added.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#numOfAllNodes(weka.classifiers.adtree.PredictionNode)">numOfAllNodes</A></B>(<A HREF="../../../weka/classifiers/adtree/PredictionNode.html">PredictionNode</A>&nbsp;root)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the total number of nodes in a tree.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#numOfBoostingIterationsTipText()">numOfBoostingIterationsTipText</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#numOfPredictionLeafNodes(weka.classifiers.adtree.PredictionNode)">numOfPredictionLeafNodes</A></B>(<A HREF="../../../weka/classifiers/adtree/PredictionNode.html">PredictionNode</A>&nbsp;root)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the number of leaf nodes in a tree - prediction nodes without children.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#numOfPredictionNodes(weka.classifiers.adtree.PredictionNode)">numOfPredictionNodes</A></B>(<A HREF="../../../weka/classifiers/adtree/PredictionNode.html">PredictionNode</A>&nbsp;root)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the number of prediction nodes in a tree.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#predictionValueForInstance(weka.core.Instance, weka.classifiers.adtree.PredictionNode, double)">predictionValueForInstance</A></B>(<A HREF="../../../weka/core/Instance.html">Instance</A>&nbsp;inst,                           <A HREF="../../../weka/classifiers/adtree/PredictionNode.html">PredictionNode</A>&nbsp;currentNode,                           double&nbsp;currentValue)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the class prediction value (vote) for an instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#randomSeedTipText()">randomSeedTipText</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#saveInstanceDataTipText()">saveInstanceDataTipText</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#searchPathTipText()">searchPathTipText</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#setNumOfBoostingIterations(int)">setNumOfBoostingIterations</A></B>(int&nbsp;b)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Sets the number of boosting iterations.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../../weka/classifiers/adtree/ADTree.html#setOptions(java.lang.String[])">setOptions</A></B>(java.lang.String[]&nbsp;options)</CODE>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -