📄 evaluation.html
字号:
<A NAME="marginResolution()"><!-- --></A><H3>marginResolution</H3><PRE>public final int <B>marginResolution</B>()</PRE><DL><DD>Gets the value of the marginResolution variable.<DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the value of the marginResolution variable</DL></DD></DL><HR><A NAME="marginCounts()"><!-- --></A><H3>marginCounts</H3><PRE>public double[] <B>marginCounts</B>()</PRE><DL><DD>Gets a copy of the marginCounts array.<DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>a copy of the marginCounts array</DL></DD></DL><HR><A NAME="numTrainClassVals()"><!-- --></A><H3>numTrainClassVals</H3><PRE>public final int <B>numTrainClassVals</B>()</PRE><DL><DD>Gets the value of the numTrainClassVals variable.<DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the value of the numTrainClassVals variable</DL></DD></DL><HR><A NAME="trainClassVals()"><!-- --></A><H3>trainClassVals</H3><PRE>public double[] <B>trainClassVals</B>()</PRE><DL><DD>Gets a copy of the trainClassVals array.<DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>a copy of the trainClassVals array</DL></DD></DL><HR><A NAME="trainClassWeights()"><!-- --></A><H3>trainClassWeights</H3><PRE>public double[] <B>trainClassWeights</B>()</PRE><DL><DD>Gets a copy of the trainClassWeights array.<DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>a copy of the trainClassWeights array</DL></DD></DL><HR><A NAME="sumPriorEntropy()"><!-- --></A><H3>sumPriorEntropy</H3><PRE>public final double <B>sumPriorEntropy</B>()</PRE><DL><DD>Gets the value of the sumPriorEntropy variable.<DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the value of the sumPriorEntropy variable</DL></DD></DL><HR><A NAME="sumSchemeEntropy()"><!-- --></A><H3>sumSchemeEntropy</H3><PRE>public final double <B>sumSchemeEntropy</B>()</PRE><DL><DD>Gets the value of the sumSchemeEntropy variable.<DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the value of the sumSchemeEntropy variable</DL></DD></DL><HR><A NAME="numInstances()"><!-- --></A><H3>numInstances</H3><PRE>public final double <B>numInstances</B>()</PRE><DL><DD>Gets the number of test instances that had a known class value (actually the sum of the weights of test instances with known class value).<DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the number of test instances with known class</DL></DD></DL><HR><A NAME="pctIncorrect()"><!-- --></A><H3>pctIncorrect</H3><PRE>public final double <B>pctIncorrect</B>()</PRE><DL><DD>Gets the percentage of instances incorrectly classified (that is, for which an incorrect prediction was made).<DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the percent of incorrectly classified instances (between 0 and 100)</DL></DD></DL><HR><A NAME="avgCost()"><!-- --></A><H3>avgCost</H3><PRE>public final double <B>avgCost</B>()</PRE><DL><DD>Gets the average cost, that is, total cost of misclassifications (incorrect plus unclassified) over the total number of instances.<DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the average cost.</DL></DD></DL><HR><A NAME="pctCorrect()"><!-- --></A><H3>pctCorrect</H3><PRE>public final double <B>pctCorrect</B>()</PRE><DL><DD>Gets the percentage of instances correctly classified (that is, for which a correct prediction was made).<DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the percent of correctly classified instances (between 0 and 100)</DL></DD></DL><HR><A NAME="pctUnclassified()"><!-- --></A><H3>pctUnclassified</H3><PRE>public final double <B>pctUnclassified</B>()</PRE><DL><DD>Gets the percentage of instances not classified (that is, for which no prediction was made by the classifier).<DD><DL></DL></DD><DD><DL><DT><B>Returns:</B><DD>the percent of unclassified instances (between 0 and 100)</DL></DD></DL><HR><A NAME="aggregate(weka.classifiers.Evaluation)"><!-- --></A><H3>aggregate</H3><PRE>public void <B>aggregate</B>(<A HREF="../../weka/classifiers/Evaluation.html">Evaluation</A> evaluation)</PRE><DL><DD>Aggregates data obtained from running different folds on different machines. Used when the -a flag is set to run the cross-validation in parallel.<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>evaluation</CODE> - the data sent back from another machine</DL></DD></DL><HR><A NAME="crossValidateModel(weka.classifiers.Classifier, weka.core.Instances, int)"><!-- --></A><H3>crossValidateModel</H3><PRE>public void <B>crossValidateModel</B>(<A HREF="../../weka/classifiers/Classifier.html">Classifier</A> classifier, <A HREF="../../weka/core/Instances.html">Instances</A> data, int numFolds) throws java.lang.Exception</PRE><DL><DD>Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>classifier</CODE> - the classifier with any options set.<DD><CODE>data</CODE> - the data on which the cross-validation is to be performed<DD><CODE>numFolds</CODE> - the number of folds for the cross-validation<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if a classifier could not be generated successfully or the class is not defined</DL></DD></DL><HR><A NAME="crossValidateModelParallel(weka.classifiers.Classifier, weka.core.Instances, int, java.lang.StringBuffer)"><!-- --></A><H3>crossValidateModelParallel</H3><PRE>public void <B>crossValidateModelParallel</B>(<A HREF="../../weka/classifiers/Classifier.html">Classifier</A> classifier, <A HREF="../../weka/core/Instances.html">Instances</A> data, int numFolds, java.lang.StringBuffer otherComputers) throws java.lang.Exception</PRE><DL><DD>Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances. This cross-validation is run in parallel by connecting to the machines described in ~/.weka-parallel.<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>classifier</CODE> - the classifier with any options set.<DD><CODE>data</CODE> - the data on which the cross-validation is to be performed<DD><CODE>numFolds</CODE> - the number of folds for the cross-validation<DD><CODE>otherComputers</CODE> - will eventually hold the names of all of the computers that the program was actually able to connect to and receive data from<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if a classifier could not be generated, if the class is not defined, or if there was an incorrect number of folds selected</DL></DD></DL><HR><A NAME="crossValidateModel(java.lang.String, weka.core.Instances, int, java.lang.String[])"><!-- --></A><H3>crossValidateModel</H3><PRE>public void <B>crossValidateModel</B>(java.lang.String classifierString, <A HREF="../../weka/core/Instances.html">Instances</A> data, int numFolds, java.lang.String[] options) throws java.lang.Exception</PRE><DL><DD>Performs a (stratified if class is nominal) cross-validation for a classifier on a set of instances.<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>classifier</CODE> - a string naming the class of the classifier<DD><CODE>data</CODE> - the data on which the cross-validation is to be performed<DD><CODE>numFolds</CODE> - the number of folds for the cross-validation<DD><CODE>options</CODE> - the options to the classifier. Any options accepted by the classifier will be removed from this array.<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if a classifier could not be generated successfully or the class is not defined</DL></DD></DL><HR><A NAME="evaluateModel(java.lang.String, java.lang.String[])"><!-- --></A><H3>evaluateModel</H3><PRE>public static java.lang.String <B>evaluateModel</B>(java.lang.String classifierString, java.lang.String[] options) throws java.lang.Exception</PRE><DL><DD>Evaluates a classifier with the options given in an array of strings. <p> Valid options are: <p> -t filename <br> Name of the file with the training data. (required) <p> -T filename <br> Name of the file with the test data. If missing a cross-validation is performed. <p> -c index <br> Index of the class attribute (1, 2, ...; default: last). <p> -x number <br> The number of folds for the cross-validation (default: 10). <p> -s seed <br> Random number seed for the cross-validation (default: 1). <p> -m filename <br> The name of a file containing a cost matrix. <p> -l filename <br> Loads classifier from the given file. <p> -d filename <br> Saves classifier built from the training data into the given file. <p> -v <br> Outputs no statistics for the training data. <p> -o <br> Outputs statistics only, not the classifier. <p> -i <br> Outputs detailed information-retrieval statistics per class. <p> -k <br> Outputs information-theoretic statistics. <p> -p range <br> Outputs predictions for test instances, along with the attributes in the specified range (and nothing else). Use '-p 0' if no attributes are desired. <p> -r <br> Outputs cumulative margin distribution (and nothing else). <p> -g <br> Only for classifiers that implement "Graphable." Outputs the graph representation of the classifier (and nothing else). <p><DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>classifierString</CODE> - class of machine learning classifier as a string<DD><CODE>options</CODE> - the array of string containing the options<DT><B>Returns:</B><DD>a string describing the results<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if model could not be evaluated successfully</DL></DD></DL><HR><A NAME="main(java.lang.String[])"><!-- --></A><H3>main</H3><PRE>public static void <B>main</B>(java.lang.String[] args)</PRE><DL><DD>A test method for this class. Just extracts the first command line argument as a classifier class name and calls evaluateModel.<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>args</CODE> - an array of command line arguments, the first of which must b
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -