📄 evaluation.html
字号:
<TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#evaluateModel(weka.classifiers.Classifier, java.lang.String[])">evaluateModel</A></B>(<A HREF="../../weka/classifiers/Classifier.html">Classifier</A> classifier, java.lang.String[] options)</CODE><BR> Evaluates a classifier with the options given in an array of strings.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#evaluateModel(java.lang.String, java.lang.String[])">evaluateModel</A></B>(java.lang.String classifierString, java.lang.String[] options)</CODE><BR> Evaluates a classifier with the options given in an array of strings.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#evaluateModelOnce(weka.classifiers.Classifier, weka.core.Instance)">evaluateModelOnce</A></B>(<A HREF="../../weka/classifiers/Classifier.html">Classifier</A> classifier, <A HREF="../../weka/core/Instance.html">Instance</A> instance)</CODE><BR> Evaluates the classifier on a single instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#evaluateModelOnce(double[], weka.core.Instance)">evaluateModelOnce</A></B>(double[] dist, <A HREF="../../weka/core/Instance.html">Instance</A> instance)</CODE><BR> Evaluates the supplied distribution on a single instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#evaluateModelOnce(double, weka.core.Instance)">evaluateModelOnce</A></B>(double prediction, <A HREF="../../weka/core/Instance.html">Instance</A> instance)</CODE><BR> Evaluates the supplied prediction on a single instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#falseNegativeRate(int)">falseNegativeRate</A></B>(int classIndex)</CODE><BR> Calculate the false negative rate with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#falsePositiveRate(int)">falsePositiveRate</A></B>(int classIndex)</CODE><BR> Calculate the false positive rate with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#fMeasure(int)">fMeasure</A></B>(int classIndex)</CODE><BR> Calculate the F-Measure with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#incorrect()">incorrect</A></B>()</CODE><BR> Gets the number of instances incorrectly classified (that is, for which an incorrect prediction was made).</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#kappa()">kappa</A></B>()</CODE><BR> Returns value of kappa statistic if class is nominal.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#KBInformation()">KBInformation</A></B>()</CODE><BR> Return the total Kononenko & Bratko Information score in bits</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#KBMeanInformation()">KBMeanInformation</A></B>()</CODE><BR> Return the Kononenko & Bratko Information score in bits per instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#KBRelativeInformation()">KBRelativeInformation</A></B>()</CODE><BR> Return the Kononenko & Bratko Relative Information score</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#main(java.lang.String[])">main</A></B>(java.lang.String[] args)</CODE><BR> A test method for this class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#marginCounts()">marginCounts</A></B>()</CODE><BR> Gets a copy of the marginCounts array.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#marginResolution()">marginResolution</A></B>()</CODE><BR> Gets the value of the marginResolution variable.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#meanAbsoluteError()">meanAbsoluteError</A></B>()</CODE><BR> Returns the mean absolute error.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#meanPriorAbsoluteError()">meanPriorAbsoluteError</A></B>()</CODE><BR> Returns the mean absolute error of the prior.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#missingClass()">missingClass</A></B>()</CODE><BR> Gets the value of the missingClass variable</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#numClasses()">numClasses</A></B>()</CODE><BR> Gets the number of classes</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#numFalseNegatives(int)">numFalseNegatives</A></B>(int classIndex)</CODE><BR> Calculate number of false negatives with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#numFalsePositives(int)">numFalsePositives</A></B>(int classIndex)</CODE><BR> Calculate number of false positives with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#numFolds()">numFolds</A></B>()</CODE><BR> Gets the number of folds to be done in the cross-validation step.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#numInstances()">numInstances</A></B>()</CODE><BR> Gets the number of test instances that had a known class value (actually the sum of the weights of test instances with known class value).</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#numTrainClassVals()">numTrainClassVals</A></B>()</CODE><BR> Gets the value of the numTrainClassVals variable.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#numTrueNegatives(int)">numTrueNegatives</A></B>(int classIndex)</CODE><BR> Calculate the number of true negatives with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#numTruePositives(int)">numTruePositives</A></B>(int classIndex)</CODE><BR> Calculate the number of true positives with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#pctCorrect()">pctCorrect</A></B>()</CODE><BR> Gets the percentage of instances correctly classified (that is, for which a correct prediction was made).</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#pctIncorrect()">pctIncorrect</A></B>()</CODE><BR> Gets the percentage of instances incorrectly classified (that is, for which an incorrect prediction was made).</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#pctUnclassified()">pctUnclassified</A></B>()</CODE><BR> Gets the percentage of instances not classified (that is, for which no prediction was made by the classifier).</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#precision(int)">precision</A></B>(int classIndex)</CODE><BR> Calculate the precision with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#priorEntropy()">priorEntropy</A></B>()</CODE><BR> Calculate the entropy of the prior distribution</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#recall(int)">recall</A></B>(int classIndex)</CODE><BR> Calculate the recall with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#relativeAbsoluteError()">relativeAbsoluteError</A></B>()</CODE><BR> Returns the relative absolute error.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#rootMeanPriorSquaredError()">rootMeanPriorSquaredError</A></B>()</CODE><BR> Returns the root mean prior squared error.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#rootMeanSquaredError()">rootMeanSquaredError</A></B>()</CODE><BR> Returns the root mean squared error.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#rootRelativeSquaredError()">rootRelativeSquaredError</A></B>()</CODE><BR> Returns the root relative squared error if the class is numeric.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#setPriors(weka.core.Instances)">setPriors</A></B>(<A HREF="../../weka/core/Instances.html">Instances</A> train)</CODE><BR> Sets the class prior probabilities</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#SFEntropyGain()">SFEntropyGain</A></B>()</CODE><BR> Returns the total SF, which is the null model entropy minus the scheme entropy.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#SFMeanEntropyGain()">SFMeanEntropyGain</A></B>()</CODE><BR> Returns the SF per instance, which is the null model entropy minus the scheme entropy, per instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE> double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#SFMeanPriorEntropy()">SFMeanPriorEntropy</A></B>()</CODE><BR> Returns the entropy per instance for the null model</TD></TR>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -