⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 evaluation.html

📁 < 数据挖掘--实用机器学习技术及java实现> 一书结合数据挖掘和机器学习的知识,作者陈述了自动挖掘模式的基础理论,并且以java语言实现了具有代表性的各类数据挖掘方法.例如:class
💻 HTML
📖 第 1 页 / 共 5 页
字号:
<TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#evaluateModel(weka.classifiers.Classifier, java.lang.String[])">evaluateModel</A></B>(<A HREF="../../weka/classifiers/Classifier.html">Classifier</A>&nbsp;classifier,              java.lang.String[]&nbsp;options)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Evaluates a classifier with the options given in an array of strings.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#evaluateModel(java.lang.String, java.lang.String[])">evaluateModel</A></B>(java.lang.String&nbsp;classifierString,              java.lang.String[]&nbsp;options)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Evaluates a classifier with the options given in an array of strings.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#evaluateModelOnce(weka.classifiers.Classifier, weka.core.Instance)">evaluateModelOnce</A></B>(<A HREF="../../weka/classifiers/Classifier.html">Classifier</A>&nbsp;classifier,                  <A HREF="../../weka/core/Instance.html">Instance</A>&nbsp;instance)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Evaluates the classifier on a single instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#evaluateModelOnce(double[], weka.core.Instance)">evaluateModelOnce</A></B>(double[]&nbsp;dist,                  <A HREF="../../weka/core/Instance.html">Instance</A>&nbsp;instance)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Evaluates the supplied distribution on a single instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#evaluateModelOnce(double, weka.core.Instance)">evaluateModelOnce</A></B>(double&nbsp;prediction,                  <A HREF="../../weka/core/Instance.html">Instance</A>&nbsp;instance)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Evaluates the supplied prediction on a single instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#falseNegativeRate(int)">falseNegativeRate</A></B>(int&nbsp;classIndex)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Calculate the false negative rate with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#falsePositiveRate(int)">falsePositiveRate</A></B>(int&nbsp;classIndex)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Calculate the false positive rate with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#fMeasure(int)">fMeasure</A></B>(int&nbsp;classIndex)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Calculate the F-Measure with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#incorrect()">incorrect</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the number of instances incorrectly classified (that is, for which an incorrect prediction was made).</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#kappa()">kappa</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns value of kappa statistic if class is nominal.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#KBInformation()">KBInformation</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Return the total Kononenko & Bratko Information score in bits</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#KBMeanInformation()">KBMeanInformation</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Return the Kononenko & Bratko Information score in bits per instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#KBRelativeInformation()">KBRelativeInformation</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Return the Kononenko & Bratko Relative Information score</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#main(java.lang.String[])">main</A></B>(java.lang.String[]&nbsp;args)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A test method for this class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double[]</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#marginCounts()">marginCounts</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets a copy of the marginCounts array.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#marginResolution()">marginResolution</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the value of the marginResolution variable.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#meanAbsoluteError()">meanAbsoluteError</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the mean absolute error.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#meanPriorAbsoluteError()">meanPriorAbsoluteError</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the mean absolute error of the prior.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#missingClass()">missingClass</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the value of the missingClass variable</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#numClasses()">numClasses</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the number of classes</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#numFalseNegatives(int)">numFalseNegatives</A></B>(int&nbsp;classIndex)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Calculate number of false negatives with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#numFalsePositives(int)">numFalsePositives</A></B>(int&nbsp;classIndex)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Calculate number of false positives with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#numFolds()">numFolds</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the number of folds to be done in the cross-validation step.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#numInstances()">numInstances</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the number of test instances that had a known class value (actually the sum of the weights of test instances with known class value).</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;int</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#numTrainClassVals()">numTrainClassVals</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the value of the numTrainClassVals variable.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#numTrueNegatives(int)">numTrueNegatives</A></B>(int&nbsp;classIndex)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Calculate the number of true negatives with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#numTruePositives(int)">numTruePositives</A></B>(int&nbsp;classIndex)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Calculate the number of true positives with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#pctCorrect()">pctCorrect</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the percentage of instances correctly classified (that is, for which a correct prediction was made).</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#pctIncorrect()">pctIncorrect</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the percentage of instances incorrectly classified (that is, for which an incorrect prediction was made).</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#pctUnclassified()">pctUnclassified</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Gets the percentage of instances not classified (that is, for which no prediction was made by the classifier).</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#precision(int)">precision</A></B>(int&nbsp;classIndex)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Calculate the precision with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#priorEntropy()">priorEntropy</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Calculate the entropy of the prior distribution</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#recall(int)">recall</A></B>(int&nbsp;classIndex)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Calculate the recall with respect to a particular class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#relativeAbsoluteError()">relativeAbsoluteError</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the relative absolute error.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#rootMeanPriorSquaredError()">rootMeanPriorSquaredError</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the root mean prior squared error.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#rootMeanSquaredError()">rootMeanSquaredError</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the root mean squared error.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#rootRelativeSquaredError()">rootRelativeSquaredError</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the root relative squared error if the class is numeric.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#setPriors(weka.core.Instances)">setPriors</A></B>(<A HREF="../../weka/core/Instances.html">Instances</A>&nbsp;train)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Sets the class prior probabilities</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#SFEntropyGain()">SFEntropyGain</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the total SF, which is the null model entropy minus the scheme entropy.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#SFMeanEntropyGain()">SFMeanEntropyGain</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the SF per instance, which is the null model entropy minus the scheme entropy, per instance.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;double</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/Evaluation.html#SFMeanPriorEntropy()">SFMeanPriorEntropy</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the entropy per instance for the null model</TD></TR>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -