⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 adaboostm1.html

📁 < 数据挖掘--实用机器学习技术及java实现> 一书结合数据挖掘和机器学习的知识,作者陈述了自动挖掘模式的基础理论,并且以java语言实现了具有代表性的各类数据挖掘方法.例如:class
💻 HTML
📖 第 1 页 / 共 3 页
字号:
<BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns an enumeration describing the available options</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>static&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/AdaBoostM1.html#main(java.lang.String[])">main</A></B>(java.lang.String[]&nbsp;argv)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Main method for testing this class.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>protected &nbsp;<A HREF="../../weka/core/Instances.html">Instances</A></CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/AdaBoostM1.html#selectWeightQuantile(weka.core.Instances, double)">selectWeightQuantile</A></B>(<A HREF="../../weka/core/Instances.html">Instances</A>&nbsp;data,                     double&nbsp;quantile)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Select only instances with weights that contribute to  the specified quantile of the weight distribution</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/AdaBoostM1.html#setClassifier(weka.classifiers.Classifier)">setClassifier</A></B>(<A HREF="../../weka/classifiers/Classifier.html">Classifier</A>&nbsp;newClassifier)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Set the classifier for boosting.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/AdaBoostM1.html#setDebug(boolean)">setDebug</A></B>(boolean&nbsp;debug)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Set debugging mode</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/AdaBoostM1.html#setMaxIterations(int)">setMaxIterations</A></B>(int&nbsp;maxIterations)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Set the maximum number of boost iterations</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/AdaBoostM1.html#setOptions(java.lang.String[])">setOptions</A></B>(java.lang.String[]&nbsp;options)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Parses a given list of options.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/AdaBoostM1.html#setSeed(int)">setSeed</A></B>(int&nbsp;seed)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Set seed for resampling.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/AdaBoostM1.html#setUseResampling(boolean)">setUseResampling</A></B>(boolean&nbsp;r)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Set resampling mode</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;void</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/AdaBoostM1.html#setWeightThreshold(int)">setWeightThreshold</A></B>(int&nbsp;threshold)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Set weight threshold</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/AdaBoostM1.html#toSource(java.lang.String)">toSource</A></B>(java.lang.String&nbsp;className)</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns the boosted model as Java source code.</TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD ALIGN="right" VALIGN="top" WIDTH="1%"><FONT SIZE="-1"><CODE>&nbsp;java.lang.String</CODE></FONT></TD><TD><CODE><B><A HREF="../../weka/classifiers/AdaBoostM1.html#toString()">toString</A></B>()</CODE><BR>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Returns description of the boosted classifier.</TD></TR></TABLE>&nbsp;<A NAME="methods_inherited_from_class_weka.classifiers.DistributionClassifier"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TD><B>Methods inherited from class weka.classifiers.<A HREF="../../weka/classifiers/DistributionClassifier.html">DistributionClassifier</A></B></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><A HREF="../../weka/classifiers/DistributionClassifier.html#classifyInstance(weka.core.Instance)">classifyInstance</A></CODE></TD></TR></TABLE>&nbsp;<A NAME="methods_inherited_from_class_weka.classifiers.Classifier"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TD><B>Methods inherited from class weka.classifiers.<A HREF="../../weka/classifiers/Classifier.html">Classifier</A></B></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE><A HREF="../../weka/classifiers/Classifier.html#forName(java.lang.String, java.lang.String[])">forName</A>, <A HREF="../../weka/classifiers/Classifier.html#makeCopies(weka.classifiers.Classifier, int)">makeCopies</A></CODE></TD></TR></TABLE>&nbsp;<A NAME="methods_inherited_from_class_java.lang.Object"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#EEEEFF" CLASS="TableSubHeadingColor"><TD><B>Methods inherited from class java.lang.Object</B></TD></TR><TR BGCOLOR="white" CLASS="TableRowColor"><TD><CODE>clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait</CODE></TD></TR></TABLE>&nbsp;<P><!-- ============ FIELD DETAIL =========== --><A NAME="field_detail"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Field Detail</B></FONT></TD></TR></TABLE><A NAME="m_Classifier"><!-- --></A><H3>m_Classifier</H3><PRE>protected <A HREF="../../weka/classifiers/Classifier.html">Classifier</A> <B>m_Classifier</B></PRE><DL><DD>The model base classifier to use</DL><HR><A NAME="m_Classifiers"><!-- --></A><H3>m_Classifiers</H3><PRE>protected <A HREF="../../weka/classifiers/Classifier.html">Classifier</A>[] <B>m_Classifiers</B></PRE><DL><DD>Array for storing the generated base classifiers.</DL><HR><A NAME="m_Betas"><!-- --></A><H3>m_Betas</H3><PRE>protected double[] <B>m_Betas</B></PRE><DL><DD>Array for storing the weights for the votes.</DL><HR><A NAME="m_MaxIterations"><!-- --></A><H3>m_MaxIterations</H3><PRE>protected int <B>m_MaxIterations</B></PRE><DL><DD>The maximum number of boost iterations</DL><HR><A NAME="m_NumIterations"><!-- --></A><H3>m_NumIterations</H3><PRE>protected int <B>m_NumIterations</B></PRE><DL><DD>The number of successfully generated base classifiers.</DL><HR><A NAME="m_WeightThreshold"><!-- --></A><H3>m_WeightThreshold</H3><PRE>protected int <B>m_WeightThreshold</B></PRE><DL><DD>Weight Threshold. The percentage of weight mass used in training</DL><HR><A NAME="m_Debug"><!-- --></A><H3>m_Debug</H3><PRE>protected boolean <B>m_Debug</B></PRE><DL><DD>Debugging mode, gives extra output if true</DL><HR><A NAME="m_UseResampling"><!-- --></A><H3>m_UseResampling</H3><PRE>protected boolean <B>m_UseResampling</B></PRE><DL><DD>Use boosting with reweighting?</DL><HR><A NAME="m_Seed"><!-- --></A><H3>m_Seed</H3><PRE>protected int <B>m_Seed</B></PRE><DL><DD>Seed for boosting with resampling.</DL><HR><A NAME="m_NumClasses"><!-- --></A><H3>m_NumClasses</H3><PRE>protected int <B>m_NumClasses</B></PRE><DL><DD>The number of classes</DL><!-- ========= CONSTRUCTOR DETAIL ======== --><A NAME="constructor_detail"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Constructor Detail</B></FONT></TD></TR></TABLE><A NAME="AdaBoostM1()"><!-- --></A><H3>AdaBoostM1</H3><PRE>public <B>AdaBoostM1</B>()</PRE><DL></DL><!-- ============ METHOD DETAIL ========== --><A NAME="method_detail"><!-- --></A><TABLE BORDER="1" CELLPADDING="3" CELLSPACING="0" WIDTH="100%"><TR BGCOLOR="#CCCCFF" CLASS="TableHeadingColor"><TD COLSPAN=1><FONT SIZE="+2"><B>Method Detail</B></FONT></TD></TR></TABLE><A NAME="selectWeightQuantile(weka.core.Instances, double)"><!-- --></A><H3>selectWeightQuantile</H3><PRE>protected <A HREF="../../weka/core/Instances.html">Instances</A> <B>selectWeightQuantile</B>(<A HREF="../../weka/core/Instances.html">Instances</A>&nbsp;data,                                         double&nbsp;quantile)</PRE><DL><DD>Select only instances with weights that contribute to  the specified quantile of the weight distribution<DD><DL></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>data</CODE> - the input instances<DD><CODE>quantile</CODE> - the specified quantile eg 0.9 to select  90% of the weight mass<DT><B>Returns:</B><DD>the selected instances</DL></DD></DL><HR><A NAME="listOptions()"><!-- --></A><H3>listOptions</H3><PRE>public java.util.Enumeration <B>listOptions</B>()</PRE><DL><DD>Returns an enumeration describing the available options<DD><DL><DT><B>Specified by: </B><DD><CODE><A HREF="../../weka/core/OptionHandler.html#listOptions()">listOptions</A></CODE> in interface <CODE><A HREF="../../weka/core/OptionHandler.html">OptionHandler</A></CODE></DL></DD><DD><DL><DT><B>Returns:</B><DD>an enumeration of all the available options</DL></DD></DL><HR><A NAME="setOptions(java.lang.String[])"><!-- --></A><H3>setOptions</H3><PRE>public void <B>setOptions</B>(java.lang.String[]&nbsp;options)                throws java.lang.Exception</PRE><DL><DD>Parses a given list of options. Valid options are:<p> -D <br> Turn on debugging output.<p> -W classname <br> Specify the full class name of a classifier as the basis for  boosting (required).<p> -I num <br> Set the number of boost iterations (default 10). <p> -P num <br> Set the percentage of weight mass used to build classifiers (default 100). <p> -Q <br> Use resampling instead of reweighting.<p> -S seed <br> Random number seed for resampling (default 1).<p> Options after -- are passed to the designated classifier.<p><DD><DL><DT><B>Specified by: </B><DD><CODE><A HREF="../../weka/core/OptionHandler.html#setOptions(java.lang.String[])">setOptions</A></CODE> in interface <CODE><A HREF="../../weka/core/OptionHandler.html">OptionHandler</A></CODE></DL></DD><DD><DL><DT><B>Parameters:</B><DD><CODE>options</CODE> - the list of options as an array of strings<DT><B>Throws:</B><DD><CODE>java.lang.Exception</CODE> - if an option is not supported</DL></DD></DL><HR><A NAME="getOptions()"><!-- --></A><H3>getOptions</H3><PRE>public java.lang.String[] <B>getOptions</B>()</PRE><DL><DD>Gets the current settings of the Classifier.<DD><DL><DT><B>Specified by: </B><DD><CODE><A HREF="../../weka/core/OptionHandler.html#getOptions()">getOptions</A></CODE> in interface <CODE><A HREF="../../weka/core/OptionHandler.html">OptionHandler</A></CODE></DL></DD><DD><DL><DT><B>Returns:</B><DD>an array of strings suitable for passing to setOptions</DL></DD></DL><HR>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -