📄 hostcont.v
字号:
`include "inc.h"//*******************************************************************************// S Y N T H E S I Z A B L E S D R A M C O N T R O L L E R C O R E//// This core adheres to the GNU Public License // // This is a synthesizable Synchronous DRAM controller Core. As it stands,// it is ready to work with 8Mbyte SDRAMs, organized as 2M x 32 at 100MHz// and 125MHz. For example: Samsung KM432S2030CT, Fujitsu MB81F643242B.//// The core has been carefully coded so as to be "platform-independent". // It has been successfully compiled and simulated under three separate// FPGA/CPLD platforms:// Xilinx Foundation Base Express V2.1i// Altera Max+PlusII V9.21// Lattice ispExpert V7.0// // The interface to the host (i.e. microprocessor, DSP, etc) is synchronous// and supports ony one transfer at a time. That is, burst-mode transfers// are not yet supported. In may ways, the interface to this core is much// like that of a typical SRAM. The hand-shaking between the host and the // SDRAM core is done through the "sdram_busy_l" signal generated by the // core. Whenever this signal is active low, the host must hold the address,// data (if doing a write), size and the controls (cs, rd/wr). //// Connection Diagram:// SDRAM side:// sd_wr_l connect to -WR pin of SDRAM// sd_cs_l connect to -CS pin of SDRAM// sd_ras_l connect to -RAS pin of SDRAM// sd_cas_l connect to -CAS pin of SDRAM// sd_dqm[3:0] connect to the DQM3,DQM2,DQM1,DQM0 pins// sd_addx[10:0] connect to the Address bus [10:0]// sd_data[31:0] connect to the data bus [31:0]// sd_ba[1:0] connect to BA1, BA0 pins of SDRAM// // HOST side:// mp_addx[22:0] connect to the address bus of the host. // 23 bit address bus give access to 8Mbyte// of the SDRAM, as byte, half-word (16bit)// or word (32bit)// mp_data_in[31:0] Unidirectional bus connected to the data out// of the host. To use this, enable // "databus_is_unidirectional" in INC.H// mp_data_out[31:0] Unidirectional bus connected to the data in // of the host. To use this, enable// "databus_is_unidirectional" in INC.H// mp_data[31:0] Bi-directional bus connected to the host's// data bus. To use the bi-directionla bus,// disable "databus_is_unidirectional" in INC.H// mp_rd_l Connect to the -RD output of the host// mp_wr_l Connect to the -WR output of the host// mp_cs_l Connect to the -CS of the host// mp_size[1:0] Connect to the size output of the host// if there is one. When set to 0// all trasnfers are 32 bits, when set to 1// all transfers are 8 bits, and when set to// 2 all xfers are 16 bits. If you want the// data to be lower order aligned, turn on// "align_data_bus" option in INC.H// sdram_busy_l Connect this to the wait or hold equivalent// input of the host. The host, must hold the// bus if it samples this signal as low.// sdram_mode_set_l When a write occurs with this set low,// the SDRAM's mode set register will be programmed// with the data supplied on the data_bus[10:0].////// Author: Jeung Joon Lee joon.lee@quantum.com, cmosexod@ix.netcom.com// //*******************************************************************************//// Hierarchy://// SDRAM.V Top Level Module// HOSTCONT.V Controls the interfacing between the micro and the SDRAM// SDRAMCNT.V This is the SDRAM controller. All data passed to and from// is with the HOSTCONT.// optional// MICRO.V This is the built in SDRAM tester. This module generates // a number of test logics which is used to test the SDRAM// It is basically a Micro bus generator. // /**/ module hostcont ( // system connections sys_rst_l, sys_clk, // microprocessor side connections mp_addx, mp_data_in, mp_data_out, mp_rd_l, mp_wr_l, mp_cs_l, sdram_mode_set_l, sdram_busy_l, mp_size, // SDRAM side connections sd_addx, sd_data_out, sd_data_in, sd_ba, // SDRAMCNT side sd_addx10_mux, sd_addx_mux, sd_rd_ena, do_read, do_write, doing_refresh, do_modeset, modereg_cas_latency, modereg_burst_length, mp_data_mux, decoded_dqm, do_write_ack, do_read_ack, do_modeset_ack, pwrup, // debug// rd_wr_clk reg_mp_data_mux, reg_mp_addx, reg_sd_data, reg_modeset );// ****************************************//// I/O DEFINITION//// ****************************************// system connectionsinput sys_rst_l; // asynch active low resetinput sys_clk; // clock source to the SDRAM// microprocessor side connectionsinput [22:0] mp_addx; // ABW bits for the addxinput [31:0] mp_data_in; // DBW bits of data bus input (see INC.H)output [31:0] mp_data_out; // DBW bits of data bus output (see INC.H)input mp_rd_l; // micro bus read , active lowinput mp_wr_l; // micro bus write, active lowinput mp_cs_l;input sdram_mode_set_l; // acive low request for SDRAM mode setoutput sdram_busy_l; // active low busy outputinput [1:0] mp_size;// SDRAM side connectionsoutput [10:0] sd_addx; // 11 bits of muxed SDRAM addxinput [31:0] sd_data_in;output [31:0] sd_data_out;output [1:0] sd_ba; // bank select output to the SDRAMinput pwrup;// SDRAMCNT sideinput [1:0] sd_addx10_mux;input [1:0] sd_addx_mux;input sd_rd_ena;output do_write;output do_read;input doing_refresh;output do_modeset;output [2:0] modereg_cas_latency;output [2:0] modereg_burst_length;input mp_data_mux;output [3:0] decoded_dqm; // this is the decoded DQM according to the size. Used during writesinput do_write_ack; // acknowledge signal from sdramcont state machine // saying that it is now ok to clear 'do_write' signalinput do_read_ack; // acknowledge signal from sdramcont state machine // saying that is is now ok to clear 'do_read' signalinput do_modeset_ack;//debug//output rd_wr_clk;output [31:0] reg_mp_data_mux;output [22:0] reg_mp_addx;output [31:0] reg_sd_data;output [10:0] reg_modeset;// ****************************************//// Memory Elements //// ****************************************//wire [22:0] reg_mp_addx;reg [31:0] reg_mp_data;reg [31:0] reg_sd_data;reg [3:0] decoded_dqm;reg [10:0] reg_modeset; reg [10:0] sd_addx;reg do_read;reg do_write;reg [2:0] do_state;reg do_modeset;reg [1:0] sd_ba;reg busy_a_ena;//wire [31:0] sd_data;wire [31:0] sd_data_buff;wire [31:0] reg_mp_data_mux;reg [31:0] mp_data_out;wire busy_a;wire mp_data_ena;wire do_read_clk;wire do_read_rst_clk;wire do_write_clk;wire do_modeset_clk;wire do_modeset_rst_clk;wire clock_xx;wire modereg_ena;wire read_busy;wire write_busy;wire refresh_busy;wire modeset_busy;wire do_write_rst;wire do_read_rst;wire do_modeset_rst; assign mp_data_ena = ~mp_rd_l;assign modereg_cas_latency = reg_modeset[6:4];assign modereg_burst_length = reg_modeset[2:0];assign read_busy = do_read | (~mp_rd_l & busy_a_ena);assign write_busy = do_write | (~mp_wr_l & busy_a_ena);assign modeset_busy = do_modeset;assign refresh_busy = `LO; // SDRAM BUSY SIGNAL GENERATION//// The BUSY signal is NOR'd of READ_BUSY, WRITE_BUSY and DUMB_BUSY.// READ_BUSY is generated while the SDRAM is performing a read. This // does not necessarily have to he synchronous to the micro's read. // The WRITE_BUSY is generated while the SDRAM is performing WRITE.// Again, due to the "dump-n-run" mode (only in SMART_H=1) the micro's// write bus cycle does not necessarily align with SDRAM's write cycle.// DUMB_BUSY is a signal which generates the BUSY at the falling edge of// micro's SDRAM_CS. This is used for those microprocessors which // require a device BUSY as soon as the address is placed on its bus. For// example, most Intel microcontrollers and small processors do have this// requirement. This means that one will fofeit on the dump-n-go feature.// assign sdram_busy_l = ~( read_busy | write_busy | (doing_refresh & ~mp_cs_l)| (modeset_busy & ~mp_cs_l) );// MP ADDRESS LATCH// Transparent latch// Used to hold the addx from the micro. Latch on the falling edge of// do_write.// BAsed on the way "do_write" is generated, we only need to latch on the writes
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -