📄 sdramcnt.v
字号:
`include "inc.h"//*******************************************************************************// S Y N T H E S I Z A B L E S D R A M C O N T R O L L E R C O R E//// This core adheres to the GNU Public License // // This is a synthesizable Synchronous DRAM controller Core. As it stands,// it is ready to work with 8Mbyte SDRAMs, organized as 2M x 32 at 100MHz// and 125MHz. For example: Samsung KM432S2030CT, Fujitsu MB81F643242B.//// The core has been carefully coded so as to be "platform-independent". // It has been successfully compiled and simulated under three separate// FPGA/CPLD platforms:// Xilinx Foundation Base Express V2.1i// Altera Max+PlusII V9.21// Lattice ispExpert V7.0// // The interface to the host (i.e. microprocessor, DSP, etc) is synchronous// and supports ony one transfer at a time. That is, burst-mode transfers// are not yet supported. In may ways, the interface to this core is much// like that of a typical SRAM. The hand-shaking between the host and the // SDRAM core is done through the "sdram_busy_l" signal generated by the // core. Whenever this signal is active low, the host must hold the address,// data (if doing a write), size and the controls (cs, rd/wr). //// Connection Diagram:// SDRAM side:// sd_wr_l connect to -WR pin of SDRAM// sd_cs_l connect to -CS pin of SDRAM// sd_ras_l connect to -RAS pin of SDRAM// sd_cas_l connect to -CAS pin of SDRAM// sd_dqm[3:0] connect to the DQM3,DQM2,DQM1,DQM0 pins// sd_addx[10:0] connect to the Address bus [10:0]// sd_data[31:0] connect to the data bus [31:0]// sd_ba[1:0] connect to BA1, BA0 pins of SDRAM// // HOST side:// mp_addx[22:0] connect to the address bus of the host. // 23 bit address bus give access to 8Mbyte// of the SDRAM, as byte, half-word (16bit)// or word (32bit)// mp_data_in[31:0] Unidirectional bus connected to the data out// of the host. To use this, enable // "databus_is_unidirectional" in INC.H// mp_data_out[31:0] Unidirectional bus connected to the data in // of the host. To use this, enable// "databus_is_unidirectional" in INC.H// mp_data[31:0] Bi-directional bus connected to the host's// data bus. To use the bi-directionla bus,// disable "databus_is_unidirectional" in INC.H// mp_rd_l Connect to the -RD output of the host// mp_wr_l Connect to the -WR output of the host// mp_cs_l Connect to the -CS of the host// mp_size[1:0] Connect to the size output of the host// if there is one. When set to 0// all trasnfers are 32 bits, when set to 1// all transfers are 8 bits, and when set to// 2 all xfers are 16 bits. If you want the// data to be lower order aligned, turn on// "align_data_bus" option in INC.H// sdram_busy_l Connect this to the wait or hold equivalent// input of the host. The host, must hold the// bus if it samples this signal as low.// sdram_mode_set_l When a write occurs with this set low,// the SDRAM's mode set register will be programmed// with the data supplied on the data_bus[10:0].////// Author: Jeung Joon Lee joon.lee@quantum.com, cmosexod@ix.netcom.com// //*******************************************************************************//// Hierarchy://// SDRAM.V Top Level Module// HOSTCONT.V Controls the interfacing between the micro and the SDRAM// SDRAMCNT.V This is the SDRAM controller. All data passed to and from// is with the HOSTCONT.// optional// MICRO.V This is the built in SDRAM tester. This module generates // a number of test logics which is used to test the SDRAM// It is basically a Micro bus generator. // /**/ module sdramcnt( // system level stuff sys_rst_l, sys_clk, // SDRAM connections sd_wr_l, sd_cs_l, sd_ras_l, sd_cas_l, sd_dqm, // Host Controller connections do_mode_set, do_read, do_write, doing_refresh, sd_addx_mux, sd_addx10_mux, sd_rd_ena, sd_data_ena, modereg_cas_latency, modereg_burst_length, mp_data_mux, decoded_dqm, do_write_ack, do_read_ack, do_modeset_ack, pwrup, // debug next_state, autorefresh_cntr, autorefresh_cntr_l, cntr_limit );parameter N1 = 4;// ****************************************//// I/O DEFINITION//// ****************************************// System level stuffinput sys_rst_l;input sys_clk;// SDRAM connectionsoutput sd_wr_l;output sd_cs_l;output sd_ras_l;output sd_cas_l;output [(N1-1):0] sd_dqm;// Host Controller connectionsinput do_mode_set;input do_read;input do_write;output doing_refresh;output [1:0] sd_addx_mux;output [1:0] sd_addx10_mux;output sd_rd_ena;output sd_data_ena;input [2:0] modereg_cas_latency;input [2:0] modereg_burst_length;output mp_data_mux;input [3:0] decoded_dqm;output do_write_ack;output do_read_ack;output do_modeset_ack;output pwrup;// Debugoutput [3:0] next_state;output [3:0] autorefresh_cntr;output autorefresh_cntr_l;output [12:0] cntr_limit;// ****************************************//// Memory Elements //// ****************************************//reg [3:0] next_state;reg [7:0] refresh_timer;reg sd_wr_l;reg sd_cs_l;reg sd_ras_l;reg sd_cas_l;reg [3:0] sd_dqm;reg [1:0] sd_addx_mux;reg [1:0] sd_addx10_mux;reg sd_data_ena;reg pwrup; // this variable holds the power up conditionreg [12:0] refresh_cntr; // this is the refresh counterreg refresh_cntr_l; // this is the refresh counter reset signalreg [3:0] burst_length_cntr;reg burst_cntr_ena;reg sd_rd_ena; // read latch gate, active highreg [12:0] cntr_limit;reg [3:0] modereg_burst_count;reg [2:0] refresh_state;reg mp_data_mux;wire do_refresh; // this bit indicates autorefresh is duereg doing_refresh; // this bit indicates that the state machine is // doing refresh.reg [3:0] autorefresh_cntr;reg autorefresh_cntr_l;reg do_write_ack;reg do_read_ack;reg do_modeset_ack;reg do_refresh_ack;wire Trc_expired, Ref_expired;assign Trc_expired = (autorefresh_cntr == 4'h6); assign Ref_expired = (refresh_cntr == cntr_limit); //// State Machinealways @(posedge sys_clk or negedge sys_rst_l) if (~sys_rst_l) begin next_state <= `state_powerup; //state_powerup is b1010 autorefresh_cntr_l <= `LO; refresh_cntr_l <= `LO; pwrup <= `HI; // high indicates we've just power'd up or RESET sd_wr_l <= `HI; sd_cs_l <= `HI; sd_ras_l <= `HI; sd_cas_l <= `HI; sd_dqm <= 4'hF; sd_data_ena <= `LO; sd_addx_mux <= 2'b10; // select the mode reg default value sd_addx10_mux <= 2'b11; // select 1 as default sd_rd_ena <= `LO; mp_data_mux <= `LO;// refresh_cntr<= 13'h0000; burst_cntr_ena <= `LO; // do not enable the burst counter doing_refresh <= `LO; do_write_ack <= `LO; // do not ack as reset default do_read_ack <= `LO; // do not ack as reset default do_modeset_ack <= `LO; // do not ack as reset default do_refresh_ack <= `LO; end else case (next_state) // Power Up state `state_powerup: begin //if next_state is equal to state_powetup then execute the following sentence next_state <= `state_precharge; //state_precharge equal to b1110 sd_wr_l <= `HI; sd_cs_l <= `HI; sd_ras_l <= `HI; sd_cas_l <= `HI; sd_dqm <= 4'hF; sd_data_ena <= `LO; sd_addx_mux <= 2'b10; sd_rd_ena <= `LO; pwrup <= `HI; // this is the power up run burst_cntr_ena <= `LO; // do not enable the burst counter refresh_cntr_l <= `HI; // allow the refresh cycle counter to count end // PRECHARGE both (or all) banks `state_precharge: begin //if the next_state is state_precharge,the enable the control signal of SDRAM sd_wr_l <= `LO; sd_cs_l <= `LO; sd_ras_l <= `LO; sd_cas_l <= `HI; sd_dqm <= 4'hF; sd_addx10_mux <= 2'b11; // A10 = 1'b1 next_state <= `state_idle; if (do_write_ack) do_write_ack<= `LO; // done acknowledging the write request if (do_read_ack) do_read_ack <= `LO; // done acknowledging the read request end // Delay Trp // this delay is needed to meet the minimum precharge to new command // delay. For most parts, this is 20nS, which means you need 1 clock cycle // of NOP at 100MHz `state_delay_Trp: begin //state_delay_Trp equal to b0000 sd_wr_l <= `HI; sd_cs_l <= `HI; sd_ras_l <= `HI; if ( (refresh_cntr == cntr_limit) & (pwrup == `HI) ) begin doing_refresh <= `LO; // refresh cycle is done refresh_cntr_l <= `LO; // ..reset refresh counter next_state <= `state_modeset; // if this was power-up, then go and set mode reg end else begin doing_refresh <= `HI; // indicate that we're doing refresh next_state <= `state_auto_refresh; end end // Autorefresh `state_auto_refresh: begin sd_wr_l <= `HI; sd_cs_l <= `LO; sd_ras_l <= `LO; sd_cas_l <= `LO; sd_addx10_mux <= 2'b01; // A10 = 0 next_state <= `state_auto_refresh_dly; autorefresh_cntr_l <= `HI; //allow refresh delay cntr (Trc) to tick do_refresh_ack <= `HI; // acknowledge refresh request end // This state generates the Trc delay. // this delay is the delay from the refresh command to the next valid command // most parts require this to be 60 to 70nS. So at 100MHz, we need at least // 6 NOPs. `state_auto_refresh_dly: begin sd_wr_l <= `HI; sd_cs_l <= `HI; sd_ras_l <= `HI; sd_cas_l <= `HI; sd_addx10_mux <= 2'b00; // select ROW again A10 = A20 /* casex ( {Trc_expired, Ref_expired, pwrup, (do_write|do_read)} ) // Trc not expired yet 4'b0xxx: begin next_state <= `state_auto_refresh_dly; do_refresh_ack <= `LO; end // Back-back refreshes not done yet 4'b10xx: begin
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -