📄 micro.v
字号:
`include "tst_inc.h"`include "inc.h"//*******************************************************************************// S Y N T H E S I Z A B L E S D R A M C O N T R O L L E R C O R E//// This core adheres to the GNU Public License // // This is a synthesizable Synchronous DRAM controller Core. As it stands,// it is ready to work with 8Mbyte SDRAMs, organized as 2M x 32 at 100MHz// and 125MHz. For example: Samsung KM432S2030CT, Fujitsu MB81F643242B.//// The core has been carefully coded so as to be "platform-independent". // It has been successfully compiled and simulated under three separate// FPGA/CPLD platforms:// Xilinx Foundation Base Express V2.1i// Altera Max+PlusII V9.21// Lattice ispExpert V7.0// // The interface to the host (i.e. microprocessor, DSP, etc) is synchronous// and supports ony one transfer at a time. That is, burst-mode transfers// are not yet supported. In may ways, the interface to this core is much// like that of a typical SRAM. The hand-shaking between the host and the // SDRAM core is done through the "sdram_busy_l" signal generated by the // core. Whenever this signal is active low, the host must hold the address,// data (if doing a write), size and the controls (cs, rd/wr). //// Connection Diagram:// SDRAM side:// sd_wr_l connect to -WR pin of SDRAM// sd_cs_l connect to -CS pin of SDRAM// sd_ras_l connect to -RAS pin of SDRAM// sd_cas_l connect to -CAS pin of SDRAM// sd_dqm[3:0] connect to the DQM3,DQM2,DQM1,DQM0 pins// sd_addx[10:0] connect to the Address bus [10:0]// sd_data[31:0] connect to the data bus [31:0]// sd_ba[1:0] connect to BA1, BA0 pins of SDRAM// // HOST side:// mp_addx[22:0] connect to the address bus of the host. // 23 bit address bus give access to 8Mbyte// of the SDRAM, as byte, half-word (16bit)// or word (32bit)// mp_data_in[31:0] Unidirectional bus connected to the data out// of the host. To use this, enable // "databus_is_unidirectional" in INC.H// mp_data_out[31:0] Unidirectional bus connected to the data in // of the host. To use this, enable// "databus_is_unidirectional" in INC.H// mp_data[31:0] Bi-directional bus connected to the host's// data bus. To use the bi-directionla bus,// disable "databus_is_unidirectional" in INC.H// mp_rd_l Connect to the -RD output of the host// mp_wr_l Connect to the -WR output of the host// mp_cs_l Connect to the -CS of the host// mp_size[1:0] Connect to the size output of the host// if there is one. When set to 0// all trasnfers are 32 bits, when set to 1// all transfers are 8 bits, and when set to// 2 all xfers are 16 bits. If you want the// data to be lower order aligned, turn on// "align_data_bus" option in INC.H// sdram_busy_l Connect this to the wait or hold equivalent// input of the host. The host, must hold the// bus if it samples this signal as low.// sdram_mode_set_l When a write occurs with this set low,// the SDRAM's mode set register will be programmed// with the data supplied on the data_bus[10:0].////// Author: Jeung Joon Lee joon.lee@quantum.com, cmosexod@ix.netcom.com// //*******************************************************************************//// Hierarchy://// SDRAM.V Top Level Module// HOSTCONT.V Controls the interfacing between the micro and the SDRAM// SDRAMCNT.V This is the SDRAM controller. All data passed to and from// is with the HOSTCONT.// optional// MICRO.V This is the built in SDRAM tester. This module generates // a number of test logics which is used to test the SDRAM// It is basically a Micro bus generator. // /**/ module micro( // system connections sys_clk, sys_rst_l, // Connections to the HOSTCONT.V sdram_busy_l, mp_addx, mp_data_out, mp_data_in, mp_wr_l, mp_rd_l, mp_cs_l, mp_size, next_state, data_is_correct, sdram_mode_set_l, // debug top_state );// ****************************************//// I/O DEFINITION//// ****************************************// system connectionsinput sys_clk; // main system clockinput sys_rst_l; // main system reset// connections to the SDRAM CONTROLLERinput sdram_busy_l; output [22:0] mp_addx;output mp_wr_l;output mp_rd_l;output mp_cs_l;output [1:0] mp_size;input [3:0] next_state;output [31:0] mp_data_out; // data bus to the SDRAM controllerinput [31:0] mp_data_in; // data bus from the SDRAM controlleroutput data_is_correct;output sdram_mode_set_l;// debugoutput [3:0] top_state;// Intermodule connectionswire [7:0] bus_state;wire data_ena;wire [31:0] mp_data_out;wire [31:0] mp_data_in;wire [1:0] mp_size;// Memory element definitionsreg [3:0] top_state;reg mp_cs_l;reg mp_wr_l;reg mp_rd_l;reg [31:0] reg_mp_data_out;reg [22:0] reg_mp_addx;reg [22:0] reg_byte_counter;reg data_is_correct;reg sdram_mode_set_l;/*** SINGLE WRITE FOLLOWED BY GAP THEN FOLLOWED BY SINGLE READ TEST***/`ifdef do_read_write_test`endif/*** BURST WRITE FOLLOWED BY GAP THEN FOLLOWED BY BURST READ TEST***/`ifdef do_burst_write_read_test`endif/*** A ONE-TIME BURST WRITE FOLLOWED BY GAP THEN FOLLOWED BY MANY BURST READ TEST***/`ifdef do_single_burst_write_read_test// the number of write/read in the test`define RW_COUNT 23'h000015// number of clock ticks between the reads.`define GAP_DELAY 23'h000030 // define the amount of address delta`define MP_ADDX_DELTA 23'h000001// define the amount of data delta`define MP_DATA_DELTA 32'h01010101// Micro Simulator State Machine State Definitions`define powerup_delay 4'h0`define burst_write_cs 4'h1`define burst_write_assert_wr 4'h2`define burst_write_wait_4_busy 4'h3`define burst_write_deassert_wr 4'h4`define burst_wr_rd_delay 4'h5`define burst_read_cs 4'h6`define burst_read_assert_rd 4'h7`define burst_read_wait_4_busy 4'h8`define burst_read_deassert_rd 4'h9`define request_modereg 4'ha`define SIZE_IS_BYTE 2'b01`define SIZE_IS_HALF_WORD 2'b10`define SIZE_IS_WORD 2'b00assign mp_size = `SIZE_IS_BYTE;assign mp_addx = reg_mp_addx;assign mp_data_out = reg_mp_data_out;always @(posedge sys_clk or negedge sys_rst_l) if (~sys_rst_l) begin top_state <= `powerup_delay; // initialze state mp_cs_l <= `HI; mp_wr_l <= `HI; mp_rd_l <= `HI; reg_mp_addx <= 23'h000000; // reset address counter reg_mp_data_out <= 32'h00000000; // reset data counter reg_byte_counter <= 23'h000000; // clear byte counter data_is_correct <= `HI; // correct by default sdram_mode_set_l <= `HI; // do not issue mode reg change by default end else case (top_state) // Wait until the SDRAM has completed its power-up sequences `powerup_delay: begin sdram_mode_set_l <= `HI; if (next_state==`state_idle) top_state <= `burst_write_cs;// go and do burst write else top_state <= `powerup_delay; end // Assert MP CS to begin the write `burst_write_cs: begin mp_cs_l <= `LO; top_state <= `burst_write_assert_wr; end // Assert MP WR `burst_write_assert_wr: begin mp_wr_l <= `LO; top_state <= `burst_write_wait_4_busy; end // Wait until the SDRAM controller is no longer busy `burst_write_wait_4_busy: if (~sdram_busy_l) top_state <= `burst_write_wait_4_busy; else top_state <= `burst_write_deassert_wr; // Deassert the WR, and check to see if it has completed all writes `burst_write_deassert_wr: begin mp_wr_l <= `HI; // deassert WR if (reg_byte_counter == `RW_COUNT) begin reg_mp_addx <= 0; reg_mp_data_out <= 0; reg_byte_counter <= 0; // reset the counter mp_cs_l <= `HI; top_state <= `burst_wr_rd_delay; end else begin reg_mp_addx <= reg_mp_addx + `MP_ADDX_DELTA; reg_mp_data_out <= reg_mp_data_out + `MP_DATA_DELTA; reg_byte_counter <= reg_byte_counter + 1; // one IO done top_state <= `burst_write_assert_wr; end end // Wait here and kill GAP_DELAY number of cycles `burst_wr_rd_delay: if (reg_byte_counter != `GAP_DELAY) begin reg_byte_counter <= reg_byte_counter + 1; top_state <= `burst_wr_rd_delay; end else begin reg_byte_counter <= 23'h000000; top_state <= `burst_read_cs; end // Assert MP CS to prepare for reads `burst_read_cs: begin mp_cs_l <= `LO; // assert CS top_state <= `burst_read_assert_rd; end // Assert MP RD `burst_read_assert_rd: begin mp_rd_l <= `LO; top_state <= `burst_read_wait_4_busy; end // Wait until the SDRAM Controller is no longer busy `burst_read_wait_4_busy: if (~sdram_busy_l) top_state <= `burst_read_wait_4_busy; else top_state <= `burst_read_deassert_rd; // Deassert MP RD and Prepare for the next resd, `burst_read_deassert_rd: begin if (mp_data_in != reg_mp_data_out) begin data_is_correct <= `LO; end mp_rd_l <= `HI; // deassert RD if (reg_byte_counter == `RW_COUNT) begin reg_mp_addx <= 0; reg_mp_data_out <= 0; reg_byte_counter <= 0; // reset the counter mp_cs_l <= `HI; top_state <= `burst_wr_rd_delay; end else begin reg_mp_addx <= reg_mp_addx + `MP_ADDX_DELTA; // increment addx reg_mp_data_out <= reg_mp_data_out + `MP_DATA_DELTA; // increment data expected reg_byte_counter <= reg_byte_counter + 1; // one IO done top_state <= `burst_read_assert_rd; end end endcase `endifendmodule
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -