📄 sift.c
字号:
@param img image
@param r pixel row
@param c pixel col
@param mag output as gradient magnitude at pixel (r,c)
@param ori output as gradient orientation at pixel (r,c)
@return Returns 1 if the specified pixel is a valid one and sets mag and
ori accordingly; otherwise returns 0
*/
int calc_grad_mag_ori( IplImage* img, int r, int c, double* mag, double* ori )
{
double dx, dy;
if( r > 0 && r < img->height - 1 && c > 0 && c < img->width - 1 )
{
dx = pixval32f( img, r, c+1 ) - pixval32f( img, r, c-1 );
dy = pixval32f( img, r-1, c ) - pixval32f( img, r+1, c );
*mag = sqrt( dx*dx + dy*dy );
*ori = atan2( dy, dx );
return 1;
}
else
return 0;
}
/*
Gaussian smooths an orientation histogram.
@param hist an orientation histogram
@param n number of bins
*/
void smooth_ori_hist( double* hist, int n )
{
double prev, tmp, h0 = hist[0];
int i;
prev = hist[n-1];
for( i = 0; i < n; i++ )
{
tmp = hist[i];
hist[i] = 0.25 * prev + 0.5 * hist[i] +
0.25 * ( ( i+1 == n )? h0 : hist[i+1] );
prev = tmp;
}
}
/*
Finds the magnitude of the dominant orientation in a histogram
@param hist an orientation histogram
@param n number of bins
@return Returns the value of the largest bin in hist
*/
double dominant_ori( double* hist, int n )
{
double omax;
int maxbin, i;
omax = hist[0];
maxbin = 0;
for( i = 1; i < n; i++ )
if( hist[i] > omax )
{
omax = hist[i];
maxbin = i;
}
return omax;
}
/*
Interpolates a histogram peak from left, center, and right values
*/
#define interp_hist_peak( l, c, r ) ( 0.5 * ((l)-(r)) / ((l) - 2.0*(c) + (r)) )
/*
Adds features to an array for every orientation in a histogram greater than
a specified threshold.
@param features new features are added to the end of this array
@param hist orientation histogram
@param n number of bins in hist
@param mag_thr new features are added for entries in hist greater than this
@param feat new features are clones of this with different orientations
*/
void add_good_ori_features( CvSeq* features, double* hist, int n,
double mag_thr, struct feature* feat )
{
struct feature* new_feat;
double bin, PI2 = CV_PI * 2.0;
int l, r, i;
for( i = 0; i < n; i++ )
{
l = ( i == 0 )? n - 1 : i-1;
r = ( i + 1 ) % n;
if( hist[i] > hist[l] && hist[i] > hist[r] && hist[i] >= mag_thr )
{
bin = i + interp_hist_peak( hist[l], hist[i], hist[r] );
bin = ( bin < 0 )? n + bin : ( bin >= n )? bin - n : bin;
new_feat = clone_feature( feat );
new_feat->ori = ( ( PI2 * bin ) / n ) - CV_PI;
cvSeqPush( features, new_feat );
free( new_feat );
}
}
}
/*
Makes a deep copy of a feature
@param feat feature to be cloned
@return Returns a deep copy of feat
*/
struct feature* clone_feature( struct feature* feat )
{
struct feature* new_feat;
struct detection_data* ddata;
new_feat = new_feature();
ddata = feat_detection_data( new_feat );
memcpy( new_feat, feat, sizeof( struct feature ) );
memcpy( ddata, feat_detection_data(feat), sizeof( struct detection_data ) );
new_feat->feature_data = ddata;
return new_feat;
}
/*
Computes feature descriptors for features in an array. Based on Section 6
of Lowe's paper.
@param features array of features
@param gauss_pyr Gaussian scale space pyramid
@param d width of 2D array of orientation histograms
@param n number of bins per orientation histogram
*/
void compute_descriptors( CvSeq* features, IplImage*** gauss_pyr, int d, int n)
{
struct feature* feat;
struct detection_data* ddata;
double*** hist;
int i, k = features->total;
for( i = 0; i < k; i++ )
{
feat = CV_GET_SEQ_ELEM( struct feature, features, i );
ddata = feat_detection_data( feat );
hist = descr_hist( gauss_pyr[ddata->octv][ddata->intvl], ddata->r,
ddata->c, feat->ori, ddata->scl_octv, d, n );
hist_to_descr( hist, d, n, feat );
release_descr_hist( &hist, d );
}
}
/*
Computes the 2D array of orientation histograms that form the feature
descriptor. Based on Section 6.1 of Lowe's paper.
@param img image used in descriptor computation
@param r row coord of center of orientation histogram array
@param c column coord of center of orientation histogram array
@param ori canonical orientation of feature whose descr is being computed
@param scl scale relative to img of feature whose descr is being computed
@param d width of 2d array of orientation histograms
@param n bins per orientation histogram
@return Returns a d x d array of n-bin orientation histograms.
*/
double*** descr_hist( IplImage* img, int r, int c, double ori,
double scl, int d, int n )
{
double*** hist;
double cos_t, sin_t, hist_width, exp_denom, r_rot, c_rot, grad_mag,
grad_ori, w, rbin, cbin, obin, bins_per_rad, PI2 = 2.0 * CV_PI;
int radius, i, j;
hist = calloc( d, sizeof( double** ) );
for( i = 0; i < d; i++ )
{
hist[i] = calloc( d, sizeof( double* ) );
for( j = 0; j < d; j++ )
hist[i][j] = calloc( n, sizeof( double ) );
}
cos_t = cos( ori );
sin_t = sin( ori );
bins_per_rad = n / PI2;
exp_denom = d * d * 0.5;
hist_width = SIFT_DESCR_SCL_FCTR * scl;
radius = hist_width * sqrt(2) * ( d + 1.0 ) * 0.5 + 0.5;
for( i = -radius; i <= radius; i++ )
for( j = -radius; j <= radius; j++ )
{
/*
Calculate sample's histogram array coords rotated relative to ori.
Subtract 0.5 so samples that fall e.g. in the center of row 1 (i.e.
r_rot = 1.5) have full weight placed in row 1 after interpolation.
*/
c_rot = ( j * cos_t - i * sin_t ) / hist_width;
r_rot = ( j * sin_t + i * cos_t ) / hist_width;
rbin = r_rot + d / 2 - 0.5;
cbin = c_rot + d / 2 - 0.5;
if( rbin > -1.0 && rbin < d && cbin > -1.0 && cbin < d )
if( calc_grad_mag_ori( img, r + i, c + j, &grad_mag, &grad_ori ))
{
grad_ori -= ori;
while( grad_ori < 0.0 )
grad_ori += PI2;
while( grad_ori >= PI2 )
grad_ori -= PI2;
obin = grad_ori * bins_per_rad;
w = exp( -(c_rot * c_rot + r_rot * r_rot) / exp_denom );
interp_hist_entry( hist, rbin, cbin, obin, grad_mag * w, d, n );
}
}
return hist;
}
/*
Interpolates an entry into the array of orientation histograms that form
the feature descriptor.
@param hist 2D array of orientation histograms
@param rbin sub-bin row coordinate of entry
@param cbin sub-bin column coordinate of entry
@param obin sub-bin orientation coordinate of entry
@param mag size of entry
@param d width of 2D array of orientation histograms
@param n number of bins per orientation histogram
*/
void interp_hist_entry( double*** hist, double rbin, double cbin,
double obin, double mag, int d, int n )
{
double d_r, d_c, d_o, v_r, v_c, v_o;
double** row, * h;
int r0, c0, o0, rb, cb, ob, r, c, o;
r0 = cvFloor( rbin );
c0 = cvFloor( cbin );
o0 = cvFloor( obin );
d_r = rbin - r0;
d_c = cbin - c0;
d_o = obin - o0;
/*
The entry is distributed into up to 8 bins. Each entry into a bin
is multiplied by a weight of 1 - d for each dimension, where d is the
distance from the center value of the bin measured in bin units.
*/
for( r = 0; r <= 1; r++ )
{
rb = r0 + r;
if( rb >= 0 && rb < d )
{
v_r = mag * ( ( r == 0 )? 1.0 - d_r : d_r );
row = hist[rb];
for( c = 0; c <= 1; c++ )
{
cb = c0 + c;
if( cb >= 0 && cb < d )
{
v_c = v_r * ( ( c == 0 )? 1.0 - d_c : d_c );
h = row[cb];
for( o = 0; o <= 1; o++ )
{
ob = ( o0 + o ) % n;
v_o = v_c * ( ( o == 0 )? 1.0 - d_o : d_o );
h[ob] += v_o;
}
}
}
}
}
}
/*
Converts the 2D array of orientation histograms into a feature's descriptor
vector.
@param hist 2D array of orientation histograms
@param d width of hist
@param n bins per histogram
@param feat feature into which to store descriptor
*/
void hist_to_descr( double*** hist, int d, int n, struct feature* feat )
{
int int_val, i, r, c, o, k = 0;
for( r = 0; r < d; r++ )
for( c = 0; c < d; c++ )
for( o = 0; o < n; o++ )
feat->descr[k++] = hist[r][c][o];
feat->d = k;
normalize_descr( feat );
for( i = 0; i < k; i++ )
if( feat->descr[i] > SIFT_DESCR_MAG_THR )
feat->descr[i] = SIFT_DESCR_MAG_THR;
normalize_descr( feat );
/* convert floating-point descriptor to integer valued descriptor */
for( i = 0; i < k; i++ )
{
int_val = SIFT_INT_DESCR_FCTR * feat->descr[i];
feat->descr[i] = MIN( 255, int_val );
}
}
/*
Normalizes a feature's descriptor vector to unitl length
@param feat feature
*/
void normalize_descr( struct feature* feat )
{
double cur, len_inv, len_sq = 0.0;
int i, d = feat->d;
for( i = 0; i < d; i++ )
{
cur = feat->descr[i];
len_sq += cur*cur;
}
len_inv = 1.0 / sqrt( len_sq );
for( i = 0; i < d; i++ )
feat->descr[i] *= len_inv;
}
/*
Compares features for a decreasing-scale ordering. Intended for use with
CvSeqSort
@param feat1 first feature
@param feat2 second feature
@param param unused
@return Returns 1 if feat1's scale is greater than feat2's, -1 if vice versa,
and 0 if their scales are equal
*/
int feature_cmp( void* feat1, void* feat2, void* param )
{
struct feature* f1 = (struct feature*) feat1;
struct feature* f2 = (struct feature*) feat2;
if( f1->scl < f2->scl )
return 1;
if( f1->scl > f2->scl )
return -1;
return 0;
}
/*
De-allocates memory held by a descriptor histogram
@param hist pointer to a 2D array of orientation histograms
@param d width of hist
*/
void release_descr_hist( double**** hist, int d )
{
int i, j;
for( i = 0; i < d; i++)
{
for( j = 0; j < d; j++ )
free( (*hist)[i][j] );
free( (*hist)[i] );
}
free( *hist );
*hist = NULL;
}
/*
De-allocates memory held by a scale space pyramid
@param pyr scale space pyramid
@param octvs number of octaves of scale space
@param n number of images per octave
*/
void release_pyr( IplImage**** pyr, int octvs, int n )
{
int i, j;
for( i = 0; i < octvs; i++ )
{
for( j = 0; j < n; j++ )
cvReleaseImage( &(*pyr)[i][j] );
free( (*pyr)[i] );
}
free( *pyr );
*pyr = NULL;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -