📄 edege_detection.m
字号:
%基于小波变换模极大的多尺度图像边缘检测matlab源代码 该算法采用的是样条小波,
% 为了更好的检测边缘,用a tuous 算法代替了mallat算法。
% 该算法和mallat快速算法主要区别:
% 1 a tuous 算法不需要抽取偶数样本,所以奇异检测定位更准确,相应的重构是不需要插零。
% 2 a tuous 算法需要对滤波器进行伸缩。
clear all;
load woman;
I = ind2gray(X,map);
imshow(I);
I1 = imadjust(I,stretchlim(I),[0,1]);
figure;imshow(I1);
[N,M] = size(I);
h = [0.125,0.375,0.375,0.125];
g = [0.5,-0.5];
delta = [1,0,0];
J = 2;
a(1:N,1:M,1,1:J+1) = 0;
dx(1:N,1:M,1,1:J+1) = 0;
dy(1:N,1:M,1,1:J+1) = 0;
d(1:N,1:M,1,1:J+1) = 0;
a(:,:,1,1) = conv2(h,h,I,'same');
dx(:,:,1,1) = conv2(delta,g,I,'same');
dy(:,:,1,1) = conv2(g,delta,I,'same');
x = dx(:,:,1,1);
y = dy(:,:,1,1);
d(:,:,1,1) = sqrt(x.^2+y.^2);
I1 = imadjust(d(:,:,1,1),stretchlim(d(:,:,1,1)),[0 1]);
figure;
imshow(I1);
lh = length(h);
lg = length(g);
for j = 1:J+1
lhj = 2^j*(lh-1)+1;
lgj = 2^j*(lg-1)+1;
hj(1:lhj)=0;
gj(1:lgj)=0;
for n = 1:lh
hj(2^j*(n-1)+1)=h(n);
end
for n = 1:lg
gj(2^j*(n-1)+1)=g(n);
end
a(:,:,1,j+1) = conv2(hj,hj,a(:,:,1,j),'same');
dx(:,:,1,j+1) = conv2(delta,gj,a(:,:,1,j),'same');
dy(:,:,1,j+1) = conv2(gj,delta,a(:,:,1,j),'same');
x = dx(:,:,1,j+1);
y = dy(:,:,1,j+1);
dj(:,:,1,j+1) = sqrt(x.^2+y.^2);
I1 = imadjust(dj(:,:,1,j+1),stretchlim(dj(:,:,1,j+1)),[0 1]);
figure;imshow(I1);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -