📄 cp0702_gaussian_derivatives_1.m
字号:
%
% FUNCTION 7.6 : "cp0702_Gaussian_derivatives_
% 10dB_bandwidth"
%
% Analysis of -10 dB of the first 15 derivatives of the
% Gaussian pulse as a function of the shape factor
%
% 'smp' samples of the Gaussian pulse are considered, in
% the time interval 'Tmax - Tmin'
%
% The function receives in input:
% 1) the minimum value of the shape factor 'alphamin'
% 2) the increase step 'alphastep'
% 3) the number of values to be investigated
% 'N_alphavalues'
%
% The function computes the Energy Spectral Densities of
% the first 15 derivatives of the Gaussian pulse for the
% 'alpha' value received in input, and then evaluates and
% plots the -10 dB bandwidth for each derivative
%
% Programmed by Luca De Nardis
function cp0702_Gaussian_derivatives_10dB_bandwidth(...
alphamin, alphastep, N_alphavalues)
% -----------------------------------------------
% Step Zero - Input parameters and Initialization
% -----------------------------------------------
smp = 4096; % number of samples
alpha = alphamin; % Gaussian pulse form factor
Tmin = -4e-9; % Lower time limit
Tmax = 4e-9; % Upper time limit
threshold = -10; % Threshold (in dB) used to compute
% the bandwidth
t=linspace(Tmin,Tmax,smp);% Inizialization of the time axis
dt = (Tmax - Tmin) / smp; % sampling period
for j=1:N_alphavalues
factor(j)=alpha;
for i=1:15
% -------------------------------------------
% Step One - Pulse waveform in the time domain
% -------------------------------------------
derivative(i,:) =...
cp0702_analytical_waveforms(t,i,alpha);
derivative(i,:) = derivative(i,:) / ...
max(abs(derivative(i,:)));
% -------------------------------------------
% Step Two - Analysis in the frequency domain and
% evaluation of -10 dB Bandwidth
% -------------------------------------------
[Ess,f_high,f_low,BW] = ...
cp0702_bandwidth(derivative(i,:),dt,threshold);
minus10dbBand(i,j)=BW;
end
%Increase of alpha value for the next step
alpha = alpha + alphastep;
end
% -----------------------------
% Step Three - Graphical output
% -----------------------------
F=figure(1);
plot(factor,minus10dbBand');
axis([2e-10 12e-10 1e9 6e9]);
AX=gca;
set(AX,'FontSize',12);
X=xlabel('\alpha [s]');
set(X,'FontSize',14);
Y=ylabel('-10 dB Bandwidth [Hz]');
set(Y,'FontSize',14);
grid on
derivebehaviour = {'Increasing differentiation order'};
text(7e-10, 3e9, derivebehaviour,'BackgroundColor',...
[1 1 1]);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -