📄 span.cpp
字号:
{
j=0;
//Get the POSs from the unknown recognition dictionary
if(pWordItems[nWordsIndex].nHandle>0)
{//The word has is only one POS value
//We have record its POS and nFrequncy in the items.
m_nTags[i][j]=pWordItems[nWordsIndex].nHandle;
m_dFrequency[i][j]=pWordItems[nWordsIndex].dValue-log(MAX_FREQUENCE)+log((double)(m_context.GetFrequency(0,m_nTags[i][j])+1));
if(m_dFrequency[i][j]<0)//Not permit the value less than 0
m_dFrequency[i][j]=0;
j++;
}
else
{//The word has multiple POSs, we should retrieve the information from Core Dictionary
if(pWordItems[nWordsIndex].nHandle<0)
{//The word has is only one POS value
//We have record its POS and nFrequncy in the items.
if(pWordItems[nWordsIndex].nHandle==-'t'*256-'t')//tt
{
char sWordOrg[100],sPostfix[10];
double dRatio=0.6925;//The ratio which transliteration as a person name
PostfixSplit(pWordItems[nWordsIndex].sWord,sWordOrg,sPostfix);
if(sPostfix[0]!=0)
dRatio=0.01;
m_nTags[i][j]='n'*256+'r';
m_dFrequency[i][j]=-log(dRatio)+pWordItems[nWordsIndex].dValue;
//m_dFrequency[i][j]=log(dRatio)+pWordItems[nWordsIndex].dValue-log(m_context.GetFrequency(0,m_nTags[i][j]))+log(MAX_FREQUENCE);
//P(W|R)=P(WRT)/P(RT)=P(R)*P(W|T)/P(R|T)
j++;
m_nTags[i][j]='n'*256+'s';
m_dFrequency[i][j]=-log(1-dRatio)+pWordItems[nWordsIndex].dValue;
//m_dFrequency[i][j]=log(1-dRatio)+pWordItems[nWordsIndex].dValue-log(m_context.GetFrequency(0,m_nTags[i][j]))+log(MAX_FREQUENCE);
j++;
}
else//Unknown words such as Chinese person name or place name
{
m_nTags[i][j]=-pWordItems[nWordsIndex].nHandle;
// m_dFrequency[i][j++]=(double)(1+pWordItems[nWordsIndex].nFrequency)/(double)(m_context.GetFrequency(0,aPOS[j])+1);
m_dFrequency[i][j++]=pWordItems[nWordsIndex].dValue;
}
}
dictCore.GetHandle(m_sWords[i],&nCount,aPOS,aFreq);
for(;j<nCount;j++)
{//Get the POS set of sCurWord in the unknown dictionary
m_nTags[i][j]=aPOS[j];
m_dFrequency[i][j]=-log(1+aFreq[j])+log(m_context.GetFrequency(0,m_nTags[i][j])+1);
}
}
}
if(j==0)
{//We donot know the POS, so we have to guess them according lexical knowledge
GuessPOS(i,&j);//Guess the POS of current word
}
m_nTags[i][j]=-1;//Set the ending POS
if(j==1)//No ambuguity
{//No ambuguity, so we can break from the loop
i++;
m_sWords[i][0]=0;
break;
}
if(!bSplit)
nWordsIndex++;
}
if(pWordItems[nWordsIndex].sWord[0]==0)
nRetPos=-1;//Reaching ending
if(m_nTags[i-1][1]!=-1)//||m_sWords[i][0]==0
{//Set end for words like "张/华/平"
if(m_tagType!=TT_NORMAL)
m_nTags[i][0]=101;
else
m_nTags[i][0]=1;
m_dFrequency[i][0]=0;
m_sWords[i][0]=0;//Set virtual ending
m_nTags[i++][1]=-1;
}
m_nCurLength=i;//The current word count
if(nRetPos!=-1)
return nWordsIndex+1;//Next start position
return -1;//Reaching ending
}
//Set the tag type
void CSpan::SetTagType(enum TAG_TYPE nType)
{
m_tagType=nType;
}
//POS tagging with Hidden Markov Model
bool CSpan::POSTagging(PWORD_RESULT pWordItems,CDictionary &dictCore,CDictionary &dictUnknown)
{
//pWordItems: Items; nItemCount: the count of items;core dictionary and unknown recognition dictionary
int i=0,j,nStartPos;
Reset(false);
while(i>-1&&pWordItems[i].sWord[0]!=0)
{
nStartPos=i;//Start Position
i=GetFrom(pWordItems,nStartPos,dictCore,dictUnknown);
GetBestPOS();
switch(m_tagType)
{
case TT_NORMAL://normal POS tagging
j=1;
while(m_nBestTag[j]!=-1&&j<m_nCurLength)
{//Store the best POS tagging
pWordItems[j+nStartPos-1].nHandle=m_nBestTag[j];
//Let 。be 0
if(pWordItems[j+nStartPos-1].dValue>0&&dictCore.IsExist(pWordItems[j+nStartPos-1].sWord,-1))//Exist and update its frequncy as a POS value
pWordItems[j+nStartPos-1].dValue=log(MAX_FREQUENCE)-log(dictCore.GetFrequency(pWordItems[j+nStartPos-1].sWord,m_nBestTag[j])+1);
j+=1;
}
break;
case TT_PERSON://Person recognition
/*clock_t lStart,lEnd;
lStart=clock();
*/
SplitPersonPOS(dictUnknown);
//lEnd=clock();
//printf("SplitPersonPOS=%f\n",(double)(lEnd-lStart)*1000/CLOCKS_PER_SEC);
//Spit Persons POS
//lStart=clock();
PersonRecognize(dictUnknown);
//lEnd=clock();
//printf("PersonRecognize=%f\n",(double)(lEnd-lStart)/CLOCKS_PER_SEC);
//Person Recognition with the person recognition dictionary
break;
case TT_PLACE://Place name recognition
PlaceRecognize(dictCore,dictUnknown);
break;
case TT_TRANS://Transliteration
TransRecognize(dictCore,dictUnknown);
break;
default:
break;
}
Reset();
}
return true;
}
//Guess the POS of No. nIndex word item
bool CSpan::GuessPOS(int nIndex,int *pSubIndex)
{
int j=0,i=nIndex,nCharType;
unsigned int nLen;
switch(m_tagType)
{
case TT_NORMAL:
break;
case TT_PERSON:
j=0;
if(CC_Find("××",m_sWords[nIndex]))
{
m_nTags[i][j]=6;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,6)+1);
}
else
{
m_nTags[i][j]=0;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,0)+1);
nLen=strlen(m_sWords[nIndex]);
if(nLen>=4)
{
m_nTags[i][j]=0;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,0)+1);
m_nTags[i][j]=11;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,11)*8);
m_nTags[i][j]=12;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,12)*8);
m_nTags[i][j]=13;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,13)*8);
}
else if(nLen==2)
{
m_nTags[i][j]=0;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,0)+1);
nCharType=charType((unsigned char *)m_sWords[nIndex]);
if(nCharType==CT_OTHER||nCharType==CT_CHINESE)
{
m_nTags[i][j]=1;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,1)+1);
m_nTags[i][j]=2;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,2)+1);
m_nTags[i][j]=3;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,3)+1);
m_nTags[i][j]=4;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,4)+1);
}
m_nTags[i][j]=11;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,11)*8);
m_nTags[i][j]=12;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,12)*8);
m_nTags[i][j]=13;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,13)*8);
}
}
break;
case TT_PLACE:
j=0;
m_nTags[i][j]=0;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,0)+1);
nLen=strlen(m_sWords[nIndex]);
if(nLen>=4)
{
m_nTags[i][j]=11;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,11)*8);
m_nTags[i][j]=12;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,12)*8);
m_nTags[i][j]=13;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,13)*8);
}
else if(nLen==2)
{
m_nTags[i][j]=0;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,0)+1);
nCharType=charType((unsigned char *)m_sWords[nIndex]);
if(nCharType==CT_OTHER||nCharType==CT_CHINESE)
{
m_nTags[i][j]=1;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,1)+1);
m_nTags[i][j]=2;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,2)+1);
m_nTags[i][j]=3;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,3)+1);
m_nTags[i][j]=4;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,4)+1);
}
m_nTags[i][j]=11;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,11)*8);
m_nTags[i][j]=12;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,12)*8);
m_nTags[i][j]=13;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,13)*8);
}
break;
case TT_TRANS:
j=0;
nLen=strlen(m_sWords[nIndex]);
m_nTags[i][j]=0;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,0)+1);
if(!IsAllChinese((unsigned char *)m_sWords[nIndex]))
{
if(IsAllLetter((unsigned char *)m_sWords[nIndex]))
{
m_nTags[i][j]=1;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,1)+1);
m_nTags[i][j]=11;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,11)+1);
/* }
if(IsAllNum((unsigned char *)m_sWords[nIndex])||IsAllLetter((unsigned char *)m_sWords[nIndex]))
{
*/ m_nTags[i][j]=2;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,2)*2+1);
m_nTags[i][j]=3;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,3)*2+1);
m_nTags[i][j]=12;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,12)*2+1);
m_nTags[i][j]=13;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,13)*2+1);
}
m_nTags[i][j]=41;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,41)*8);
m_nTags[i][j]=42;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,42)*8);
m_nTags[i][j]=43;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,43)*8);
}
else if(nLen>=4)
{
m_nTags[i][j]=41;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,41)*8);
m_nTags[i][j]=42;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,42)*8);
m_nTags[i][j]=43;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,43)*8);
}
else if(nLen==2)
{
nCharType=charType((unsigned char *)m_sWords[nIndex]);
if(nCharType==CT_OTHER||nCharType==CT_CHINESE)
{
m_nTags[i][j]=1;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,1)*2+1);
m_nTags[i][j]=2;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,2)*2+1);
m_nTags[i][j]=3;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,3)*2+1);
m_nTags[i][j]=30;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,30)*8+1);
m_nTags[i][j]=11;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,11)*4+1);
m_nTags[i][j]=12;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,12)*4+1);
m_nTags[i][j]=13;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,13)*4+1);
m_nTags[i][j]=21;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,21)*2+1);
m_nTags[i][j]=22;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,22)*2+1);
m_nTags[i][j]=23;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,23)*2+1);
}
m_nTags[i][j]=41;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,41)*8);
m_nTags[i][j]=42;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,42)*8);
m_nTags[i][j]=43;
m_dFrequency[i][j++]=(double)1/(double)(m_context.GetFrequency(0,43)*8);
}
break;
default:
break;
}
*pSubIndex=j;
return true;
}
ELEMENT_TYPE CSpan::ComputePossibility(int nStartPos,int nLength,CDictionary &dict)
{
ELEMENT_TYPE dRetValue=0,dPOSPoss;
//dPOSPoss: the possibility of a POS appears
//dContextPoss: The possibility of context POS appears
int nFreq;
for(int i=nStartPos;i<nStartPos+nLength;i++)
{
nFreq=dict.GetFrequency(m_sWords[i],m_nBestTag[i]);
//nFreq is word being the POS
dPOSPoss=log((double)(m_context.GetFrequency(0,m_nBestTag[i])+1))-log((double)(nFreq+1));
dRetValue+=dPOSPoss;
/* if(i<nStartPos+nLength-1)
{
dContextPoss=log((double)(m_context.GetContextPossibility(0,m_nBestTag[i],m_nBestTag[i+1])+1));
dRetValue+=dPOSPoss-dContextPoss;
}
*/ }
return dRetValue;
}
bool CSpan::TransRecognize(CDictionary &dictCore,CDictionary &transDict)
{
char sPOS[MAX_WORDS_PER_SENTENCE]="Z";
int nStart=1,nEnd=1,i=1;
while(m_nBestTag[i]>-1)
{
if(m_nBestTag[i]==1||m_nBestTag[i]==11||m_nBestTag[i]==21)//1,11,21 Trigger the recognition
{
nStart=i;
nEnd=nStart+1;
while(m_nBestTag[nEnd]==m_nBestTag[nStart])//1,11,21
nEnd++;
while(m_nBestTag[nEnd]==m_nBestTag[nStart]+1)//2,12,22
nEnd++;
while(m_nBestTag[nEnd]==m_nBestTag[nStart]+2)//3,13,23
nEnd++;
while(m_nBestTag[nEnd]==30)//3,13,23
nEnd++;
}
else if(m_nBestTag[i]==2||m_nBestTag[i]==12||m_nBestTag[i]==22)//1,11,21 Trigger the recognition
{
nStart=i;
nEnd=nStart+1;
while(m_nBestTag[nEnd]==m_nBestTag[nStart])//2,12,22
nEnd++;
while(m_nBestTag[nEnd]==m_nBestTag[nStart]+1)//2,12,22
nEnd++;
while(m_nBestTag[nEnd]==30)//3,13,23
nEnd++;
}
if(nEnd>nStart&&!IsAllNum((unsigned char *)m_sWords[nStart])&&(nEnd>nStart+2||(nEnd==nStart+2&&(m_nBestTag[nEnd-1]!=30||strlen(m_sWords[nStart])>2))||(nEnd==nStart+1&&strlen(m_sWords[nStart])>2&&!dictCore.IsExist(m_sWords[nStart],-1))))
{
m_nUnknownWords[m_nUnknownIndex][0]=m_nWordPosition[nStart];
m_nUnknownWords[m_nUnknownIndex][1]=m_nWordPosition[nEnd];
m_dWordsPossibility[m_nUnknownIndex++]=ComputePossibility(nStart,nEnd-nStart+1,transDict);
nStart=nEnd;
}
if(i<nEnd)
i=nEnd;
else
i=i+1;
}
return true;
}
bool CSpan::PlaceRecognize(CDictionary &dictCore,CDictionary &placeDict)
{
int nStart=1,nEnd=1,i=1;
while(m_nBestTag[i]>-1)
{
if(m_nBestTag[i]==1)//1 Trigger the recognition procession
{
nStart=i;
nEnd=nStart+1;
while(m_nBestTag[nEnd]==1)//
nEnd++;
while(m_nBestTag[nEnd]==2)//2,12,22
nEnd++;
while(m_nBestTag[nEnd]==3)
nEnd++;
while(m_nBestTag[nEnd]==4)
nEnd++;
}
else if(m_nBestTag[i]==2)//1,11,21 Trigger the recognition
{
nStart=i;
nEnd=nStart+1;
while(m_nBestTag[nEnd]==2)//2
nEnd++;
while(m_nBestTag[nEnd]==3)//2
nEnd++;
while(m_nBestTag[nEnd]==4)//2
nEnd++;
}
if(nEnd>nStart)
{
m_nUnknownWords[m_nUnknownIndex][0]=m_nWordPosition[nStart];
m_nUnknownWords[m_nUnknownIndex][1]=m_nWordPosition[nEnd];
m_dWordsPossibility[m_nUnknownIndex++]=ComputePossibility(nStart,nEnd-nStart+1,placeDict);
nStart=nEnd;
}
if(i<nEnd)
i=nEnd;
else
i=i+1;
}
return true;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -