📄 pendulum.c
字号:
//******************************************************************************
//
// Software License Agreement
//
// The software supplied herewith by Microchip Technology
// Incorporated (the "Company") is intended and supplied to you, the
// Company抯 customer, for use solely and exclusively on Microchip
// products. The software is owned by the Company and/or its supplier,
// and is protected under applicable copyright laws. All rights are
// reserved. Any use in violation of the foregoing restrictions may
// subject the user to criminal sanctions under applicable laws, as
// well as to civil liability for the breach of the terms and
// conditions of this license.
//
// THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES,
// WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED
// TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
// PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT,
// IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
// CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
//
//*********************************************************************************
//
// File: pendulum.c
// Date: 14 October 2004 Original code
// Version: 1.00
//
//*********************************************************************************
#include <pic.h>
#include <pic16f684.h>
#include <math.h>
#include <stdlib.h>
void Init();
void PID();
void Set_Constants();
bit flag1,do_PID,int_flag;
signed char en0, en1, en2, en3, term1_char, term2_char, off_set;
unsigned char temp;
short int temp_int;
unsigned short int ki, kd, kp;
signed int SumE_Min, SumE_Max, SumE, integral_term, derivative_term, un;
signed long Cn;
// __CONFIG _CP_OFF & _CPD_OFF & _BOD_OFF & _MCLRE_ON & _WDT_OFF & _INTRC_OSC_NOCLKOUT & _FCMEN_ON
//***************************************************************************
// Positional PID 256 Hz
//***************************************************************************
//***************************************************************************
//Main() - Main Routine
//***************************************************************************
void main()
{
Init(); //Initialize 12F629 Microcontroller
Set_Constants(); //Get PID coefficients ki, kp and kd
while(1) //Loop Forever
{
if(do_PID){
PID();
}
}
}
//***************************************************************************
//Init - Initialization Routine
//***************************************************************************
void Init()
{
PORTA = 0;
TRISA = 0b00101101; // Set RA4 and RA2 as outputs
PORTC = 0;
TRISC = 0b00000011; // Set RC0 and RC1 as inputs, rest outputs
CMCON0 = 0x07; // Disable the comparator
IRCF0 = 1; // Used to set intrc speed to 8 MHz
IRCF1 = 1; // Used to set intrc speed to 8 MHz
IRCF2 = 1; // Used to set intrc speed to 8 MHz
CCP1CON = 0b01001100; // Full bridge PWM forward
ECCPAS = 0; // Auto_shutdown is disabled for now
PR2 = 0x3F; // Sets PWM Period at 31.2 kHz
T2CON = 0; // TMR2 Off with no prescale
CCPR1L = 0; // Sets Duty Cycle to zero
TMR2ON = 1; // Start Timer2
ANSEL = 0b00110101; // Configure AN0,AN2,AN4 and AN5 as analog
VCFG = 0; // Use Vdd as Ref
ADFM = 1; // Right justified A/D result
ADCS0 = 1; // 16 TOSC prescale
ADCS1 = 0;
ADCS2 = 1;
CHS0 = 0; // Channel select AN0
CHS1 = 0;
CHS2 = 0;
ADON = 1; //Turn A/D on
en0 = en1 = en2 = en3 = term1_char = term2_char =0;
ki = kd = 0;
kp = off_set = 0;
temp_int = integral_term = derivative_term = un =0;
SumE_Max = 30000;
SumE_Min = 1 - SumE_Max;
do_PID = 1; // Allowed to do PID function
T0CS = 0; // Timer0 as timer not a counter
TMR0 = 10; // Preload value
PSA = 0; // Prescaler to Timer0
PS0 = 0; // Prescale to 32 => 256 Hz
PS1 = 0;
PS2 = 1;
INTCON = 0;
PIE1 = 0;
T0IE = 1; // Enable Timer0 int
GIE = 1;
return;
}
void PID() // The from of the PID is C(n) = K(E(n) + (Ts/Ti)SumE + (Td/Ts)[E(n) - E(n-1)])
{
integral_term = derivative_term = 0;
// Calculate the integral term
SumE = SumE + en0; // SumE is the summation of the error terms
if(SumE > SumE_Max){ // Test if the summation is too big
SumE = SumE_Max;
}
if(SumE < SumE_Min){ // Test if the summation is too small
SumE = SumE_Min;
} // Integral term is (Ts/Ti)*SumE where Ti is Kp/Ki
// and Ts is the sampling period
// Actual equation used to calculate the integral term is
// Ki*SumE/(Kp*Fs*X) where X is an unknown scaling factor
// and Fs is the sampling frequency
integral_term = SumE / 256; // Divide by the sampling frequency
integral_term = integral_term * ki; // Multiply Ki
integral_term = integral_term / 16; // combination of scaling factor and Kp
// Calculate the derivative term
derivative_term = en0 - en3;
if(derivative_term > 120){ // Test if too large
derivative_term = 120;
}
if(derivative_term < -120){ // test if too small
derivative_term = -120;
} // Calculate derivative term using (Td/Ts)[E(n) - E(n-1)]
// Where Td is Kd/Kp
// Actual equation used is Kd(en0-en3)/(Kp*X*3*Ts)
derivative_term = derivative_term * kd; // Where X is an unknown scaling factor
derivative_term = derivative_term >> 5; // divide by 32 precalculated Kp*X*3*Ts
if(derivative_term > 120){
derivative_term = 120;
}
if(derivative_term < -120){
derivative_term = -120;
}
// C(n) = K(E(n) + (Ts/Ti)SumE + (Td/Ts)[E(n) - E(n-1)])
Cn = en0 + integral_term + derivative_term; // Sum the terms
Cn = Cn * kp / 1024; // multiply by Kp then scale
if(Cn >= 1000) // Used to limit duty cycle not to have punch through
{
Cn = 1000;
}
if(Cn <= -1000)
{
Cn = -1000;
}
if(Cn == 0){ // Set the speed of the PWM
DC1B1 = DC1B1 = 0;
CCPR1L = 0;
}
if(Cn > 0){ // Motor should go forward and set the duty cycle to Cn
P1M1 = 0; // Motor is going forward
temp = Cn;
if(temp^0b00000001){
DC1B0 = 1;
}
else{
DC1B0 = 0;
}
if(temp^0b00000010){
DC1B1 = 1;
}
else{
DC1B1 = 0;
}
CCPR1L = Cn >> 2; // Used to stop the pendulum from continually going around in a circle
off_set = off_set +1; // the offset is use to adjust the angle of the pendulum to slightly
if(off_set > 55){ // larger than it actually is
off_set = 55;
}
}
else { // Motor should go backwards and set the duty cycle to Cn
P1M1 = 1; // Motor is going backwards
temp_int = abs(Cn); // Returns the absolute int value of Cn
temp = temp_int; // int to char of LS-Byte
if(temp^0b00000001){
DC1B0 = 1;
}
else{
DC1B0 = 0;
}
if(temp^0b00000010){
DC1B1 = 1;
}
else{
DC1B1 = 0;
}
CCPR1L = temp_int >> 2; // Used to stop the pendulum from continually going around in a circle
off_set = off_set -1;
if(off_set < -55){
off_set = -55;
}
}
en3 = en2; // Shift error signals
en2 = en1;
en1 = en0;
en0 = 0;
do_PID = 0; // Done
RA4 = 0; // Test flag to measure the speed of the loop
return;
}
void Set_Constants()
{
ANS2 = 1; // Configure AN2 as analog
ANS4 = 1; // Configure AN4 as analog
ANS5 = 1; // Configure AN5 as analog
ADFM = 1; // Right justified A/D result
CHS0 = 0; // Channel select AN4
CHS1 = 0;
CHS2 = 1;
temp = 200; // Gives delay
while(temp){
temp--;
}
GODONE = 1;
while(GODONE);{
temp = 0; // Does nothing.....
}
ki = ADRESH << 8; // Store the A/D result to Integral Constant
ki = ki + ADRESL;
CHS0 = 1; // Channel select AN5
CHS1 = 0;
CHS2 = 1;
temp = 200; // Gives delay
while(temp){
temp--;
}
GODONE = 1;
while(GODONE);{
temp = 0; // Does nothing.....
}
kd = ADRESH << 8; // Store the A/D result to Differential Constant
kd = kd + ADRESL;
CHS0 = 0; // Channel select AN2
CHS1 = 1;
CHS2 = 0;
temp = 200; // Gives delay
while(temp){
temp--;
}
GODONE = 1;
while(GODONE);{
temp = 0; // Does nothing.....
}
kp = ADRESH << 8; // Store the A/D result to Proportional Constant
kp = kp + ADRESL;
CHS0 = 0; // Channel select AN0
CHS1 = 0;
CHS2 = 0;
}
void interrupt Isr()
{
if(T0IF&&T0IE){
TMR0 = 10; // Preload value
T0IF = 0; // Clear Int Flag
// flag1 = (!flag1);
RA4 = 1;
temp_int = 0;
temp_int = ADRESH << 8; // Store the A/D result with offset
temp_int = temp_int + ADRESL - 512;
en0 = temp_int + off_set/8; // Store to error function asuming no over-flow
do_PID = 1; // Allowed to do PID function
GODONE = 1; // Start next A/D cycle
}
else
{
PIR1 = 0;
RAIF = 0;
INTF = 0;
}
if(temp_int > 180){ //Check if error is too large (positive)
DC1B0 = DC1B1 = 0; // Stop PWM
CCPR1L = 0;
en0 = en1 = en2 = en3 = term1_char = term2_char = off_set = 0; // Clear all PID constants
Cn = integral_term = derivative_term = SumE = RA4 = 0;
do_PID = 0; // Stop doing PID
}
if(temp_int < -180){ //Check if error is too large (negative)
DC1B0 = DC1B1 = 0; // Stop PWM
CCPR1L = 0;
en0 = en1 = en2 = en3 = term1_char = term2_char = off_set = 0; // Clear all PID constants
Cn = integral_term = derivative_term = SumE = RA4 = 0;
do_PID = 0; // Stop doing PID
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -