📄 animc2p.m
字号:
function [sys,x0,str,ts] = sfuntmpl(t,x,u,flag)
%SFUNTMPL General M-file S-function template
% With M-file S-functions, you can define you own ordinary differential
% equations (ODEs), discrete system equations, and/or just about
% any type of algorithm to be used within a Simulink block diagram.
%
% The general form of an M-File S-function syntax is:
% [SYS,X0,STR,TS] = SFUNC(T,X,U,FLAG,P1,...,Pn)
%
% What is returned by SFUNC at a given point in time, T, depends on the
% value of the FLAG, the current state vector, X, and the current
% input vector, U.
%
% FLAG RESULT DESCRIPTION
% ----- ------ --------------------------------------------
% 0 [SIZES,X0,STR,TS] Initialization, return system sizes in SYS,
% initial state in X0, state ordering strings
% in STR, and sample times in TS.
% 1 DX Return continuous state derivatives in SYS.
% 2 DS Update discrete states SYS = X(n+1)
% 3 Y Return outputs in SYS.
% 4 TNEXT Return next time hit for variable step sample
% time in SYS.
% 5 Reserved for future (root finding).
% 9 [] Termination, perform any cleanup SYS=[].
%
%
% The state vectors, X and X0 consists of continuous states followed
% by discrete states.
%
% Optional parameters, P1,...,Pn can be provided to the S-function and
% used during any FLAG operation.
%
% When SFUNC is called with FLAG = 0, the following information
% should be returned:
%
% SYS(1) = Number of continuous states.
% SYS(2) = Number of discrete states.
% SYS(3) = Number of outputs.
% SYS(4) = Number of inputs.
% Any of the first four elements in SYS can be specified
% as -1 indicating that they are dynamically sized. The
% actual length for all other flags will be equal to the
% length of the input, U.
% SYS(5) = Reserved for root finding. Must be zero.
% SYS(6) = Direct feedthrough flag (1=yes, 0=no). The s-function
% has direct feedthrough if U is used during the FLAG=3
% call. Setting this to 0 is akin to making a promise that
% U will not be used during FLAG=3. If you break the promise
% then unpredictable results will occur.
% SYS(7) = Number of sample times. This is the number of rows in TS.
%
%
% X0 = Initial state conditions or [] if no states.
%
% STR = State ordering strings which is generally specified as [].
%
% TS = An m-by-2 matrix containing the sample time
% (period, offset) information. Where m = number of sample
% times. The ordering of the sample times must be:
%
% TS = [0 0, : Continuous sample time.
% 0 1, : Continuous, but fixed in minor step
% sample time.
% PERIOD OFFSET, : Discrete sample time where
% PERIOD > 0 & OFFSET < PERIOD.
% -2 0]; : Variable step discrete sample time
% where FLAG=4 is used to get time of
% next hit.
%
% There can be more than one sample time providing
% they are ordered such that they are monotonically
% increasing. Only the needed sample times should be
% specified in TS. When specifying than one
% sample time, you must check for sample hits explicitly by
% seeing if
% abs(round((T-OFFSET)/PERIOD) - (T-OFFSET)/PERIOD)
% is within a specified tolerance, generally 1e-8. This
% tolerance is dependent upon your model's sampling times
% and simulation time.
%
% You can also specify that the sample time of the S-function
% is inherited from the driving block. For functions which
% change during minor steps, this is done by
% specifying SYS(7) = 1 and TS = [-1 0]. For functions which
% are held during minor steps, this is done by specifying
% SYS(7) = 1 and TS = [-1 1].
% Copyright 1990-2001 The MathWorks, Inc.
% $Revision: 1.17 $
%
% The following outlines the general structure of an S-function.
%
global AnimC2pFigH AnimC2pFigTitle AnimC2pAxisH
switch flag,
%%%%%%%%%%%%%%%%%%
% Initialization %
%%%%%%%%%%%%%%%%%%
case 0,
[sys,x0,str,ts]=mdlInitializeSizes;
%%%%%%%%%%%%%%%
% Derivatives %
%%%%%%%%%%%%%%%
case 1,
sys=mdlDerivatives(t,x,u);
%%%%%%%%%%
% Update %
%%%%%%%%%%
case 2,
sys=mdlUpdate(t,x,u);
%%%%%%%%%%%
% Outputs %
%%%%%%%%%%%
case 3,
sys=mdlOutputs(t,x,u);
%%%%%%%%%%%%%%%%%%%%%%%
% GetTimeOfNextVarHit %
%%%%%%%%%%%%%%%%%%%%%%%
case 4,
sys=mdlGetTimeOfNextVarHit(t,x,u);
%%%%%%%%%%%%%
% Terminate %
%%%%%%%%%%%%%
case 9,
sys=mdlTerminate(t,x,u);
%%%%%%%%%%%%%%%%%%%%
% Unexpected flags %
%%%%%%%%%%%%%%%%%%%%
otherwise
error(['Unhandled flag = ',num2str(flag)]);
end
% end sfuntmpl
%
%=============================================================================
% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the S-function.
%=============================================================================
%
function [sys,x0,str,ts]=mdlInitializeSizes
%
% call simsizes for a sizes structure, fill it in and convert it to a
% sizes array.
%
% Note that in this example, the values are hard coded. This is not a
% recommended practice as the characteristics of the block are typically
% defined by the S-function parameters.
%
global AnimC2pFigH AnimC2pFigTitle AnimC2pAxisH
global poleI_length
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 0;
sizes.NumInputs = 3;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1; % at least one sample time is needed
sys = simsizes(sizes);
%
% initialize the initial conditions
%
x0 = [];
%
% str is always an empty matrix
%
str = [];
%
% initialize the array of sample times
%
ts = [0 0];
%
% to add your init code here
%
AnimC2pFigTitle='Two Inverted Pendum';
AnimC2pFigH = figure( ...
'Name', AnimC2pFigTitle, ...
'NumberTitle', 'off');
figPos = get(AnimC2pFigH, 'position');
% ====== proportion of UI frame and axes
ui_area = 0.2;
axis_area = 1-ui_area;
% ====== animation area
axisPos = [0+20 figPos(4)*ui_area figPos(3) figPos(4)*axis_area];
% weird thing: if you don't use normalized unit for
% axes, patch for ground doesn't appear
axisPos = axisPos./[figPos(3) figPos(4) figPos(3) figPos(4)];
AnimC2pAxisH = ...
axes('unit', 'normal', 'pos', axisPos, 'visible', 'on');
% ###### animation objects ######
% ====== cart
cart_height = 0.2;
cart_length = 0.4;
cart = cart_length/2*[-1 1 1 -1 -1] + ...
j*(cart_height/2*[-1 -1 1 1 -1]-cart_height/2 +.005);
cartH = patch(real(cart), imag(cart), 'm');
set(cartH, 'erase', 'xor');
set(cartH, 'userdata', cart);
% ====== axis settings
pos_range = [-2 2];
set(AnimC2pAxisH, 'clim', [1 64], ...
'xlim', pos_range, ...
'ylim', [-cart_height 1*1.2], ...
'box', 'on');
axis equal;
set(AnimC2pAxisH, 'visible', 'on');
% ====== pole I
poleI_length = 0.2; % this must be the same as plant block
poleI_radius = 0.02;
poleI = poleI_radius*[-1 1 1 -1 -1] + ...
j*(poleI_length/2*[-1 -1 1 1 -1]+poleI_length/2+.003);
poleIH = patch(real(poleI), imag(poleI), 'y');
set(poleIH, 'erase', 'xor', 'clipping', 'off');
set(poleIH, 'userdata', poleI);
% ====== poleII
poleII_length = 0.7; % this must be the same as plant block
poleII_radius = 0.02;
poleII = poleII_radius*[-1 1 1 -1 -1] + ...
j*(poleII_length/2*[-1 -1 1 1 -1]+poleII_length/2 + poleI_length + .03);%相对位置有问题
poleIIH = patch(real(poleII), imag(poleII), 'y');
set(poleIIH, 'erase', 'xor', 'clipping', 'off');
set(poleIIH, 'userdata', poleII);
% ====== force arrow
force_x = [-1 0 nan -0.1 0 -0.1];
force_y = [0 0 nan 0.1 0 -0.1];
force = force_x + j*force_y;
forceH = line(real(force), imag(force), ...
'erase', 'xor', 'color', 'c', 'clip', 'off');
set(forceH, 'userdata', force, ...
'xdata', [0], 'ydata', [0]);
% ====== reference triangle
ref = cart_length/2*[-1 1 0 -1] + ...
j*cart_height*([0 0 1 0] - 1.1);
ref = ref - 2*j*cart_height;
refH = line(real(ref), imag(ref));
set(refH, 'color', 'g', 'linewidth', 2);
% refH = patch(real(ref), imag(ref), 'g');
set(refH, 'erase', 'background');
set(refH, 'userdata', ref);
% ====== append the handles as third row of userdata
tmp = [cartH poleIH poleIIH forceH refH -1 -1 -1 -1 -1 -1];
set(AnimC2pFigH, 'userdata', [get(AnimC2pFigH, 'userdata'); tmp]);
% end mdlInitializeSizes
%
%=============================================================================
% mdlDerivatives
% Return the derivatives for the continuous states.
%=============================================================================
%
function sys=mdlDerivatives(t,x,u)
sys = [];
% end mdlDerivatives
%
%=============================================================================
% mdlUpdate
% Handle discrete state updates, sample time hits, and major time step
% requirements.
%=============================================================================
%
function sys=mdlUpdate(t,x,u)
global AnimC2pFigH AnimC2pFigTitle AnimC2pAxisH
global poleI_length
sys = [];
%
% to add your Update code here by lzm
%
pos = u(1); theta1 = u(2); theta2 = u(3); %curr_force = u(3); curr_ref = u(4);
tmp = get(AnimC2pFigH, 'userdata');
objectH = tmp(1, :);
% ====== update cart
cartH = objectH(1);
cart = get(cartH, 'userdata');
new_cart = cart + pos;
set(cartH, 'xdata', real(new_cart), 'ydata', imag(new_cart));
% ====== update pole I
poleIH = objectH(2);
poleI = get(poleIH, 'userdata');
new_poleI = poleI*exp(-j*theta1) + pos;
set(poleIH, 'xdata', real(new_poleI), 'ydata', imag(new_poleI));
% ====== update pole II
poleIIH = objectH(3);
poleII = get(poleIIH, 'userdata');
new_poleII = (real(poleII) + j*(imag(poleII) - poleI_length))*exp(-j*theta2); %先回到原点再转动
new_poleII = real(new_poleII) + pos + poleI_length*sin(theta1) + j*(imag(new_poleII) + poleI_length*cos(theta1));%根据杆一的位置作平移
set(poleIIH, 'xdata', real(new_poleII), 'ydata', imag(new_poleII));
% end mdlUpdate
%
%=============================================================================
% mdlOutputs
% Return the block outputs.
%=============================================================================
%
function sys=mdlOutputs(t,x,u)
sys = [];
% end mdlOutputs
%
%=============================================================================
% mdlGetTimeOfNextVarHit
% Return the time of the next hit for this block. Note that the result is
% absolute time. Note that this function is only used when you specify a
% variable discrete-time sample time [-2 0] in the sample time array in
% mdlInitializeSizes.
%=============================================================================
%
function sys=mdlGetTimeOfNextVarHit(t,x,u)
sampleTime = 1; % Example, set the next hit to be one second later.
sys = t + sampleTime;
% end mdlGetTimeOfNextVarHit
%
%=============================================================================
% mdlTerminate
% Perform any end of simulation tasks.
%=============================================================================
%
function sys=mdlTerminate(t,x,u)
sys = [];
% end mdlTerminate
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -