⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 altera_mf.v

📁 SDRAM 控制器
💻 V
📖 第 1 页 / 共 5 页
字号:
    reg [width_out+1:0] result_full;
    reg [width_out+1:0] result_full2;

    reg a;

    // INTERNAL WIRE DECLARATION
    wire [width_out:0] temp_sum_wire;
    wire cout;
    wire cout_int_wire;
    wire cout_delayed_wire;
    wire overflow_int_wire;
    wire [width_out+1:0] result_int_wire;

    // INTERNAL TRI DECLARATION

    tri0 aclr_int;
    tri0 sign_data_int;
    tri0 sload_int;

    tri1 clken_int;
    tri1 add_sub_int;

    // LOCAL INTEGER DECLARATION
    integer head;
    integer i;

    // INITIAL CONSTRUCT BLOCK
    initial
    begin
    
        // Checking for invalid parameters
        if( width_in <= 0 )
        begin
            $display("Error! Value of width_in parameter must be greater than 0.");
            $stop;
        end

        if( width_out <= 0 )
        begin
            $display("Error! Value of width_out parameter must be greater than 0.");
            $stop;
        end
        
        if( extra_latency > width_out )
        begin
            $display("Info: Value of extra_latency parameter should be lower than width_out parameter for better performance/utilization.");
        end
        
        if( width_in > width_out )
        begin
            $display("Error! Value of width_in parameter should be lower than or equal to width_out.");
            $stop;
        end
    
        result = 0;
        cout_delayed = 0;
        overflow = 0;
        head = 0;
        result_int = 0;
        for (i = 0; i <= extra_latency; i = i +1)
        begin
            result_pipe [i] = 0;
        end
    end

    // ALWAYS CONSTRUCT BLOCK
    always @(posedge clock or posedge aclr_int)
    begin

        if (aclr_int == 1)
        begin
            result_int = 0;
            result = 0;
            overflow = 0;
            cout_delayed = 0;
            for (i = 0; i <= extra_latency; i = i +1)
            begin
                result_pipe [i] = 0;
            end
        end
        else
        begin
            if (clken_int == 1)
            begin
                //get result from output register
                if (extra_latency > 0)
                begin
                    result_pipe [head] = {
                                          result_int [width_out+1],
                                          {cout_int_wire, result_int [width_out-1:0]}
                                         };

                    head = (head + 1) % (extra_latency);

                    result_full = result_pipe [head];
                    cout_delayed = result_full [width_out];
                    result = result_full [width_out-1:0];
                    overflow = result_full [width_out+1];
                end
                else
                begin
                    result = temp_sum_wire;
                    overflow = overflow_int_wire;
                end

                result_int = {overflow_int_wire, {cout_int_wire, temp_sum_wire [width_out-1:0]}};
            end
        end
    end


    always @ (data or cin or add_sub_int or sign_data_int or
              result_int_wire [width_out -1:0] or sload_int or aclr_int)
    begin


        // If asynchronous clear, reset and skip.
        if (aclr_int == 1)  // asynchronous clear
        begin
            cout_int = 0;
            overflow_int = 0;
        end
        else
        begin

            if ((lpm_representation == "SIGNED") || (sign_data_int == 1))
            begin
                zeropad = (data [width_in-1] ==0) ? 0 : -1;
            end
            else
            begin
                zeropad = 0;
            end

            fb_int = (sload_int == 1'b1) ? 0 : result_int_wire [width_out-1:0];
            data_int = {zeropad, data};

            if ((add_sub_int == 1) || (sload_int == 1))
            begin
                cin_int = ((sload_int == 1'b1) ? 0 : ((cin === 1'bz) ? 0 : cin));
                temp_sum = fb_int + data_int + cin_int;
                cout_int = temp_sum [width_out];
            end
            else
            begin
                cin_int = (cin === 1'bz) ? 1 : cin;
                borrow = ~cin_int;

                temp_sum = fb_int - data_int - borrow;

                result_full2 = data_int + borrow;
                cout_int = (fb_int >= result_full2) ? 1 : 0;
            end

            if ((lpm_representation == "SIGNED") || (sign_data_int == 1))
            begin
                a = (data [width_in-1] ~^ fb_int [width_out-1]) ^ (~add_sub_int);
                overflow_int = a & (fb_int [width_out-1] ^ temp_sum[width_out-1]);
            end
            else
            begin
                overflow_int = (add_sub_int == 1) ? cout_int : ~cout_int;
            end

            if (sload_int == 1)
            begin
                cout_int = !add_sub_int;
                overflow_int = 0;
            end
        end
    end

    // CONTINOUS ASSIGNMENT

    // Get the input data and control signals.
    assign sign_data_int = sign_data;
    assign sload_int =  sload;
    assign add_sub_int = add_sub;

    assign clken_int = clken;
    assign aclr_int = aclr;
    assign result_int_wire = result_int;
    assign temp_sum_wire = temp_sum;
    assign cout_int_wire = cout_int;
    assign overflow_int_wire = overflow_int;
    assign cout = (extra_latency == 0) ? cout_int_wire : cout_delayed_wire;
    assign cout_delayed_wire = cout_delayed;

endmodule   // End of altaccumulate

// END OF MODULE

//--------------------------------------------------------------------------
// Module Name      : altmult_accum
//
// Description      : a*b + x (MAC)
//
// Limitation       : Stratix DSP block
//
// Results expected : signed & unsigned, maximum of 3 pipelines(latency) each.
//
//--------------------------------------------------------------------------

`timescale 1 ps / 1 ps

module altmult_accum (dataa, 
                      datab, 
                      scanina,
                      scaninb,
                      sourcea,
                      sourceb,
                      accum_sload_upper_data,
                      addnsub, 
                      accum_sload, 
                      signa, 
                      signb,
                      clock0, 
                      clock1, 
                      clock2, 
                      clock3,
                      ena0, 
                      ena1, 
                      ena2, 
                      ena3,
                      aclr0, 
                      aclr1, 
                      aclr2, 
                      aclr3,
                      result, 
                      overflow, 
                      scanouta, 
                      scanoutb,
                      mult_round,
                      mult_saturation,
                      accum_round,
                      accum_saturation,
                      mult_is_saturated,
                      accum_is_saturated);

    // ---------------------
    // PARAMETER DECLARATION
    // ---------------------
    parameter width_a                   = 1;
    parameter width_b                   = 1;
    parameter width_result              = 2;
    parameter input_reg_a               = "CLOCK0";
    parameter input_aclr_a              = "ACLR3";
    parameter input_reg_b               = "CLOCK0";
    parameter input_aclr_b              = "ACLR3";
    parameter addnsub_reg               = "CLOCK0";
    parameter addnsub_aclr              = "ACLR3";
    parameter addnsub_pipeline_reg      = "CLOCK0";
    parameter addnsub_pipeline_aclr     = "ACLR3";
    parameter accum_direction           = "ADD";
    parameter accum_sload_reg           = "CLOCK0";
    parameter accum_sload_aclr          = "ACLR3";
    parameter accum_sload_pipeline_reg  = "CLOCK0";
    parameter accum_sload_pipeline_aclr = "ACLR3";
    parameter representation_a          = "UNSIGNED";
    parameter sign_reg_a                = "CLOCK0";
    parameter sign_aclr_a               = "ACLR3";
    parameter sign_pipeline_reg_a       = "CLOCK0";
    parameter sign_pipeline_aclr_a      = "ACLR3";
    parameter representation_b          = "UNSIGNED";
    parameter sign_reg_b                = "CLOCK0";
    parameter sign_aclr_b               = "ACLR3";
    parameter sign_pipeline_reg_b       = "CLOCK0";
    parameter sign_pipeline_aclr_b      = "ACLR3";
    parameter multiplier_reg            = "CLOCK0";
    parameter multiplier_aclr           = "ACLR3";
    parameter output_reg                = "CLOCK0";
    parameter output_aclr               = "ACLR3";
    parameter lpm_type                  = "altmult_accum";

    parameter extra_multiplier_latency       = 0;
    parameter extra_accumulator_latency      = 0;
    parameter dedicated_multiplier_circuitry = "AUTO";
    parameter dsp_block_balancing            = "AUTO";
    parameter intended_device_family         = "Stratix";

    // StratixII related parameter
    parameter accum_round_aclr = "ACLR3";
    parameter accum_round_pipeline_aclr = "ACLR3";
    parameter accum_round_pipeline_reg = "CLOCK0";
    parameter accum_round_reg = "CLOCK0";
    parameter accum_saturation_aclr = "ACLR3";
    parameter accum_saturation_pipeline_aclr = "ACLR3";
    parameter accum_saturation_pipeline_reg = "CLOCK0";
    parameter accum_saturation_reg = "CLOCK0";
    parameter accum_sload_upper_data_aclr = "ACLR3";
    parameter accum_sload_upper_data_pipeline_aclr = "ACLR3";
    parameter accum_sload_upper_data_pipeline_reg = "CLOCK0";
    parameter accum_sload_upper_data_reg = "CLOCK0";
    parameter mult_round_aclr = "ACLR3";
    parameter mult_round_reg = "CLOCK0";
    parameter mult_saturation_aclr = "ACLR3";
    parameter mult_saturation_reg = "CLOCK0";
    
    parameter input_source_a  = "DATAA";
    parameter input_source_b  = "DATAB";
    parameter width_upper_data = 1;
    parameter multiplier_rounding = "NO";
    parameter multiplier_saturation = "NO";
    parameter accumulator_rounding = "NO";
    parameter accumulator_saturation = "NO";
    parameter port_mult_is_saturated = "UNUSED";
    parameter port_accum_is_saturated = "UNUSED";


    // ----------------
    // PORT DECLARATION
    // ----------------

    // data input ports
    input [width_a -1 : 0] dataa;
    input [width_b -1 : 0] datab;
    input [width_a -1 : 0] scanina;
    input [width_b -1 : 0] scaninb;
    input sourcea;
    input sourceb;
    input [width_result -1 : width_result - width_upper_data] accum_sload_upper_data;

    // control signals
    input addnsub;
    input accum_sload;
    input signa;
    input signb;

    // clock ports
    input clock0;
    input clock1;
    input clock2;
    input clock3;

    // clock enable ports
    input ena0;
    input ena1;
    input ena2;
    input ena3;

    // clear ports
    input aclr0;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -