📄 stratixii_atoms.v
字号:
.d(portbrewe),
.clk(clk_b_in),
.aclr(rewe_b_clr_in),
.stall(1'b0),
.devclrn(devclrn),
.devpor(devpor),
.ena(active_b_in),
.q(rewe_b_reg),
.aclrout(rewe_b_clr)
);
defparam rewe_b_register.width = 1;
defparam rewe_b_register.preset = mode_is_dp;
// address
stratixii_ram_register addr_b_register (
.d(portbaddr),
.clk(clk_b_in),
.aclr(addr_b_clr_in),
.devclrn(devclrn),
.devpor(devpor),
.stall(portbaddrstall),
.ena(active_b_in),
.q(addr_b_reg),
.aclrout(addr_b_clr)
);
defparam addr_b_register.width = port_b_address_width;
// data
stratixii_ram_register datain_b_register (
.d(portbdatain),
.clk(clk_b_in),
.aclr(datain_b_clr_in),
.devclrn(devclrn),
.devpor(devpor),
.stall(1'b0),
.ena(active_b_in),
.q(datain_b_reg),
.aclrout(datain_b_clr)
);
defparam datain_b_register.width = port_b_data_width;
// byte enable
stratixii_ram_register byteena_b_register (
.d(portbbyteenamasks),
.clk(clk_b_byteena),
.aclr(byteena_b_clr_in),
.stall(1'b0),
.devclrn(devclrn),
.devpor(devpor),
.ena(active_b_in),
.q(byteena_b_reg),
.aclrout(byteena_b_clr)
);
defparam byteena_b_register.width = port_b_byte_enable_mask_width;
defparam byteena_b_register.preset = 1'b1;
assign datain_prime_reg = (primary_port_is_a) ? datain_a_reg : datain_b_reg;
assign addr_prime_reg = (primary_port_is_a) ? addr_a_reg : addr_b_reg;
assign datain_sec_reg = (primary_port_is_a) ? datain_b_reg : datain_a_reg;
assign addr_sec_reg = (primary_port_is_a) ? addr_b_reg : addr_a_reg;
assign mask_vector_prime = (primary_port_is_a) ? mask_vector_a : mask_vector_b;
assign mask_vector_prime_int = (primary_port_is_a) ? mask_vector_a_int : mask_vector_b_int;
assign mask_vector_sec = (primary_port_is_a) ? mask_vector_b : mask_vector_a;
assign mask_vector_sec_int = (primary_port_is_a) ? mask_vector_b_int : mask_vector_a_int;
// Write pulse generation
stratixii_ram_pulse_generator wpgen_a (
.clk(ram_type ? clk_a_in : ~clk_a_in),
.ena(active_write_a & we_a_reg),
.pulse(write_pulse_a),
.cycle(write_cycle_a)
);
stratixii_ram_pulse_generator wpgen_b (
.clk(ram_type ? clk_b_in : ~clk_b_in),
.ena(active_write_b & mode_is_bdp & rewe_b_reg),
.pulse(write_pulse_b),
.cycle(write_cycle_b)
);
// Read pulse generation
stratixii_ram_pulse_generator rpgen_a (
.clk(clk_a_in),
.ena(active_a & ~we_a_reg),
.pulse(read_pulse_a),.cycle()
);
stratixii_ram_pulse_generator rpgen_b (
.clk(clk_b_in),
.ena(active_b & (mode_is_dp ? rewe_b_reg : ~rewe_b_reg)),
.pulse(read_pulse_b),.cycle()
);
assign write_pulse_prime = (primary_port_is_a) ? write_pulse_a : write_pulse_b;
assign read_pulse_prime = (primary_port_is_a) ? read_pulse_a : read_pulse_b;
assign read_pulse_prime_feedthru = (primary_port_is_a) ? read_pulse_a_feedthru : read_pulse_b_feedthru;
assign write_pulse_sec = (primary_port_is_a) ? write_pulse_b : write_pulse_a;
assign read_pulse_sec = (primary_port_is_a) ? read_pulse_b : read_pulse_a;
assign read_pulse_sec_feedthru = (primary_port_is_a) ? read_pulse_b_feedthru : read_pulse_a_feedthru;
// Create internal masks for byte enable processing
always @(byteena_a_reg)
begin
for (i = 0; i < port_a_data_width; i = i + 1)
begin
mask_vector_a[i] = (byteena_a_reg[i/byte_size_a] === 1'b1) ? 1'b0 : 1'bx;
mask_vector_a_int[i] = (byteena_a_reg[i/byte_size_a] === 1'b0) ? 1'b0 : 1'bx;
end
end
always @(byteena_b_reg)
begin
for (i = 0; i < port_b_data_width; i = i + 1)
begin
mask_vector_b[i] = (byteena_b_reg[i/byte_size_b] === 1'b1) ? 1'b0 : 1'bx;
mask_vector_b_int[i] = (byteena_b_reg[i/byte_size_b] === 1'b0) ? 1'b0 : 1'bx;
end
end
always @(posedge write_pulse_prime or posedge write_pulse_sec or
posedge read_pulse_prime or posedge read_pulse_sec)
begin
// Write stage 1 : write X to memory
if (write_pulse_prime)
begin
mem_data = mem[addr_prime_reg] ^ mask_vector_prime_int;
mem[addr_prime_reg] = mem_data;
end
if (write_pulse_sec)
begin
row_sec = addr_sec_reg / num_cols; col_sec = (addr_sec_reg % num_cols) * data_unit_width;
mem_unit_data = mem[row_sec];
for (j = col_sec; j <= col_sec + data_unit_width - 1; j = j + 1)
mem_unit_data[j] = mem_unit_data[j] ^ mask_vector_sec_int[j - col_sec];
mem[row_sec] = mem_unit_data;
end
if ((addr_prime_reg == row_sec) && write_pulse_prime && write_pulse_sec) dual_write = 2'b11;
// Read stage 1 : read data from memory
if (read_pulse_prime) read_data_latch = mem[addr_prime_reg];
if (read_pulse_sec)
begin
row_sec = addr_sec_reg / num_cols; col_sec = (addr_sec_reg % num_cols) * data_unit_width;
mem_unit_data = mem[row_sec];
for (j = col_sec; j <= col_sec + data_unit_width - 1; j = j + 1)
read_unit_data_latch[j - col_sec] = mem_unit_data[j];
end
end
// Simultaneous write to same/overlapping location by both ports
always @(dual_write)
begin
if (dual_write == 2'b11)
begin
for (i = 0; i < data_unit_width; i = i + 1)
mask_vector_common_int[i] = mask_vector_prime_int[col_sec + i] &
mask_vector_sec_int[i];
end
else if (dual_write == 2'b01) mem_unit_data = mem[row_sec];
else if (dual_write == 'b0)
begin
mem_data = mem[addr_prime_reg];
for (i = 0; i < data_unit_width; i = i + 1)
mem_data[col_sec + i] = mem_data[col_sec + i] ^ mask_vector_common_int[i];
mem[addr_prime_reg] = mem_data;
end
end
// Write stage 2 : Write actual data to memory
always @(negedge write_pulse_prime)
begin
if (clear_asserted_during_write[`PRIME] !== 1'b1)
begin
for (i = 0; i < data_width; i = i + 1)
if (mask_vector_prime[i] == 1'b0)
mem_data[i] = datain_prime_reg[i];
mem[addr_prime_reg] = mem_data;
end
dual_write[`PRIME] = 1'b0;
end
always @(negedge write_pulse_sec)
begin
if (clear_asserted_during_write[`SEC] !== 1'b1)
begin
for (i = 0; i < data_unit_width; i = i + 1)
if (mask_vector_sec[i] == 1'b0)
mem_unit_data[col_sec + i] = datain_sec_reg[i];
mem[row_sec] = mem_unit_data;
end
dual_write[`SEC] = 1'b0;
end
// Read stage 2 : Send data to output
always @(negedge read_pulse_prime)
begin
if (primary_port_is_a)
dataout_a = read_data_latch;
else
dataout_b = read_data_latch;
end
always @(negedge read_pulse_sec)
begin
if (primary_port_is_b)
dataout_a = read_unit_data_latch;
else
dataout_b = read_unit_data_latch;
end
// Same port feed through
stratixii_ram_pulse_generator ftpgen_a (
.clk(clk_a_in),
.ena(active_a & ~mode_is_dp & we_a_reg),
.pulse(read_pulse_a_feedthru),.cycle()
);
stratixii_ram_pulse_generator ftpgen_b (
.clk(clk_b_in),
.ena(active_b & mode_is_bdp & rewe_b_reg),
.pulse(read_pulse_b_feedthru),.cycle()
);
always @(negedge read_pulse_prime_feedthru)
begin
if (primary_port_is_a)
dataout_a = datain_prime_reg ^ mask_vector_prime;
else
dataout_b = datain_prime_reg ^ mask_vector_prime;
end
always @(negedge read_pulse_sec_feedthru)
begin
if (primary_port_is_b)
dataout_a = datain_sec_reg ^ mask_vector_sec;
else
dataout_b = datain_sec_reg ^ mask_vector_sec;
end
// -------- Async clear logic ---------
always @(posedge addr_a_clr or posedge datain_a_clr or posedge we_a_clr)
clear_asserted_during_write_a = write_pulse_a;
assign active_write_clear_a = active_write_a & write_cycle_a;
always @(posedge addr_a_clr)
begin
if (active_write_clear_a & we_a_reg)
mem_invalidate = 1'b1;
else if (active_a & ~we_a_reg)
begin
if (primary_port_is_a)
read_data_latch = 'bx;
else
read_unit_data_latch = 'bx;
end
end
always @(posedge datain_a_clr or posedge we_a_clr)
begin
if (active_write_clear_a & we_a_reg)
begin
if (primary_port_is_a)
mem[addr_prime_reg] = 'bx;
else
begin
mem_unit_data = mem[row_sec];
for (j = col_sec; j <= col_sec + data_unit_width - 1; j = j + 1)
mem_unit_data[j] = 1'bx;
mem[row_sec] = mem_unit_data;
end
if (primary_port_is_a)
read_data_latch = 'bx;
else
read_unit_data_latch = 'bx;
end
end
assign active_write_clear_b = active_write_b & write_cycle_b;
always @(posedge addr_b_clr or posedge datain_b_clr or posedge rewe_b_clr)
clear_asserted_during_write_b = write_pulse_b;
always @(posedge addr_b_clr)
begin
if (mode_is_bdp & active_write_clear_b & rewe_b_reg)
mem_invalidate = 1'b1;
else if (active_b & (mode_is_dp & rewe_b_reg || mode_is_bdp & ~rewe_b_reg))
begin
if (primary_port_is_b)
read_data_latch = 'bx;
else
read_unit_data_latch = 'bx;
end
end
always @(posedge datain_b_clr or posedge rewe_b_clr)
begin
if (mode_is_bdp & active_write_clear_b & rewe_b_reg)
begin
if (primary_port_is_b)
mem[addr_prime_reg] = 'bx;
else
begin
mem_unit_data = mem[row_sec];
for (j = col_sec; j <= col_sec + data_unit_width - 1; j = j + 1)
mem_unit_data[j] = 'bx;
mem[row_sec] = mem_unit_data;
end
if (primary_port_is_b)
read_data_latch = 'bx;
else
read_unit_data_latch = 'bx;
end
end
assign clear_asserted_during_write[primary_port_is_a] = clear_asserted_during_write_a;
assign clear_asserted_during_write[primary_port_is_b] = clear_asserted_during_write_b;
always @(posedge mem_invalidate)
begin
for (i = 0; i < num_rows; i = i + 1) mem[i] = 'bx;
mem_invalidate = 1'b0;
end
// ------- Output registers --------
assign clkena_a_out = (port_a_data_out_clock == "clock0") ?
ena0 || (port_a_disable_ce_on_output_registers == "on") :
ena1 || (port_a_disable_ce_on_output_registers == "on") ;
stratixii_ram_register dataout_a_register (
.d(dataout_a),
.clk(clk_a_out),
.aclr(dataout_a_clr),
.devclrn(devclrn),
.devpor(devpor),
.stall(1'b0),
.ena(clkena_a_out),
.q(dataout_a_reg),.aclrout()
);
defparam dataout_a_register.width = port_a_data_width;
assign portadataout = (out_a_is_reg) ? dataout_a_reg : dataout_a;
assign clkena_b_out = (port_b_data_out_clock == "clock0") ?
ena0 || (port_b_disable_ce_on_output_registers == "on") :
ena1 || (port_b_disable_ce_on_output_registers == "on") ;
stratixii_ram_register dataout_b_register (
.d( dataout_b ),
.clk(clk_b_out),
.aclr(dataout_b_clr),
.devclrn(devclrn),.devpor(devpor),
.stall(1'b0),
.ena(clkena_b_out),
.q(dataout_b_reg),.aclrout()
);
defparam dataout_b_register.width = port_b_data_width;
assign portbdataout = (out_b_is_reg) ? dataout_b_reg : dataout_b;
endmodule // stratixii_ram_block
//--------------------------------------------------------------------
//
// Module Name : stratixii_jtag
//
// Description : StratixII JTAG Verilog Simulation model
//
//--------------------------------------------------------------------
`timescale 1 ps/1 ps
module stratixii_jtag (tms, tck, tdi, ntrst, tdoutap, tdouser, tdo, tmsutap, tckutap, tdiutap, shiftuser, clkdruser, updateuser, runidleuser, usr1user);
input tms, tck, tdi, ntrst, tdoutap, tdouser;
output tdo, tmsutap, tckutap, tdiutap, shiftuser, clkdruser;
output updateuser, runidleuser, usr1user;
parameter lpm_type = "stratixii_jtag";
initial
begin
end
always @(tms or tck or tdi or ntrst or tdoutap or tdouser)
begin
end
endmodule
//--------------------------------------------------------------------
//
// Module Name : stratixii_crcblock
//
// Description : StratixII CRCBLOCK Verilog Simulation model
//
//--------------------------------------------------------------------
`timescale 1 ps/1 ps
module stratixii_crcblock
(
clk,
shiftnld,
ldsrc,
crcerror,
regout
);
input clk;
input shiftnld;
input ldsrc;
output crcerror;
output regout;
parameter oscillator_divider = 1;
parameter lpm_type = "stratixii_crcblock";
endmodule
//---------------------------------------------------------------------
//
// Module Name : stratixii_asmiblock
//
// Description : StratixIIII ASMIBLOCK Verilog Simulation model
//
//---------------------------------------------------------------------
`timescale 1 ps/1 ps
module stratixii_asmiblock
(
dclkin,
scein,
sdoin,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -