📄 mt48lc16m16a2.vhd
字号:
LIBRARY WORK; USE WORK.MTI_PKG.ALL; use std.textio.all;use work.macro.all;ENTITY mt48lc16m16a2 IS GENERIC ( -- Timing Parameters for -75 (PC133) and CAS Latency = 2 tAC : TIME := 6.0 ns; tHZ : TIME := 7.0 ns; tOH : TIME := 2.7 ns; tMRD : INTEGER := 2; -- 2 Clk Cycles tRAS : TIME := 44.0 ns; tRC : TIME := 66.0 ns; tRCD : TIME := 20.0 ns; tRP : TIME := 20.0 ns; tRRD : TIME := 15.0 ns; tWRa : TIME := 7.5 ns; -- A2 Version - Auto precharge mode only (1 Clk + 7.5 ns) tWRp : TIME := 15.0 ns; -- A2 Version - Precharge mode only (15 ns) tAH : TIME := 0.8 ns; tAS : TIME := 1.5 ns; tCH : TIME := 2.5 ns; tCL : TIME := 2.5 ns; tCK : TIME := 10.0 ns; tDH : TIME := 0.8 ns; tDS : TIME := 1.5 ns; tCKH : TIME := 0.8 ns; tCKS : TIME := 1.5 ns; tCMH : TIME := 0.8 ns; tCMS : TIME := 1.5 ns; addr_bits : INTEGER := 13; data_bits : INTEGER := 16; col_bits : INTEGER := 9; index : INTEGER := 0; fname : string := "tsource/sdram.rec" -- File to read from ); PORT ( Dq : INOUT STD_LOGIC_VECTOR (data_bits - 1 DOWNTO 0) := (OTHERS => 'Z'); Addr : IN STD_LOGIC_VECTOR (addr_bits - 1 DOWNTO 0) := (OTHERS => '0'); Ba : IN STD_LOGIC_VECTOR := "00"; Clk : IN STD_LOGIC := '0'; Cke : IN STD_LOGIC := '1'; Cs_n : IN STD_LOGIC := '1'; Ras_n : IN STD_LOGIC := '1'; Cas_n : IN STD_LOGIC := '1'; We_n : IN STD_LOGIC := '1'; Dqm : IN STD_LOGIC_VECTOR (1 DOWNTO 0) := "00" );END mt48lc16m16a2;ARCHITECTURE behave OF mt48lc16m16a2 IS TYPE State IS (ACT, A_REF, BST, LMR, NOP, PRECH, READ, READ_A, WRITE, WRITE_A, LOAD_FILE, DUMP_FILE); TYPE Array4xI IS ARRAY (3 DOWNTO 0) OF INTEGER; TYPE Array4xT IS ARRAY (3 DOWNTO 0) OF TIME; TYPE Array4xB IS ARRAY (3 DOWNTO 0) OF BIT; TYPE Array4x2BV IS ARRAY (3 DOWNTO 0) OF BIT_VECTOR (1 DOWNTO 0); TYPE Array4xCBV IS ARRAY (4 DOWNTO 0) OF BIT_VECTOR (Col_bits - 1 DOWNTO 0); TYPE Array_state IS ARRAY (4 DOWNTO 0) OF State; SIGNAL Operation : State := NOP; SIGNAL Mode_reg : BIT_VECTOR (addr_bits - 1 DOWNTO 0) := (OTHERS => '0'); SIGNAL Active_enable, Aref_enable, Burst_term : BIT := '0'; SIGNAL Mode_reg_enable, Prech_enable, Read_enable, Write_enable : BIT := '0'; SIGNAL Burst_length_1, Burst_length_2, Burst_length_4, Burst_length_8 : BIT := '0'; SIGNAL Cas_latency_2, Cas_latency_3 : BIT := '0'; SIGNAL Ras_in, Cas_in, We_in : BIT := '0'; SIGNAL Write_burst_mode : BIT := '0'; SIGNAL RAS_clk, Sys_clk, CkeZ : BIT := '0'; -- Checking internal wires SIGNAL Pre_chk : BIT_VECTOR (3 DOWNTO 0) := "0000"; SIGNAL Act_chk : BIT_VECTOR (3 DOWNTO 0) := "0000"; SIGNAL Dq_in_chk, Dq_out_chk : BIT := '0'; SIGNAL Bank_chk : BIT_VECTOR (1 DOWNTO 0) := "00"; SIGNAL Row_chk : BIT_VECTOR (addr_bits - 1 DOWNTO 0) := (OTHERS => '0'); SIGNAL Col_chk : BIT_VECTOR (col_bits - 1 DOWNTO 0) := (OTHERS => '0');BEGIN -- CS# Decode WITH Cs_n SELECT Cas_in <= TO_BIT (Cas_n, '1') WHEN '0', '1' WHEN '1', '1' WHEN OTHERS; WITH Cs_n SELECT Ras_in <= TO_BIT (Ras_n, '1') WHEN '0', '1' WHEN '1', '1' WHEN OTHERS; WITH Cs_n SELECT We_in <= TO_BIT (We_n, '1') WHEN '0', '1' WHEN '1', '1' WHEN OTHERS; -- Commands Decode Active_enable <= NOT(Ras_in) AND Cas_in AND We_in; Aref_enable <= NOT(Ras_in) AND NOT(Cas_in) AND We_in; Burst_term <= Ras_in AND Cas_in AND NOT(We_in); Mode_reg_enable <= NOT(Ras_in) AND NOT(Cas_in) AND NOT(We_in); Prech_enable <= NOT(Ras_in) AND Cas_in AND NOT(We_in); Read_enable <= Ras_in AND NOT(Cas_in) AND We_in; Write_enable <= Ras_in AND NOT(Cas_in) AND NOT(We_in); -- Burst Length Decode Burst_length_1 <= NOT(Mode_reg(2)) AND NOT(Mode_reg(1)) AND NOT(Mode_reg(0)); Burst_length_2 <= NOT(Mode_reg(2)) AND NOT(Mode_reg(1)) AND Mode_reg(0); Burst_length_4 <= NOT(Mode_reg(2)) AND Mode_reg(1) AND NOT(Mode_reg(0)); Burst_length_8 <= NOT(Mode_reg(2)) AND Mode_reg(1) AND Mode_reg(0); -- CAS Latency Decode Cas_latency_2 <= NOT(Mode_reg(6)) AND Mode_reg(5) AND NOT(Mode_reg(4)); Cas_latency_3 <= NOT(Mode_reg(6)) AND Mode_reg(5) AND Mode_reg(4); -- Write Burst Mode Write_burst_mode <= Mode_reg(9); -- RAS Clock for checking tWR and tRP PROCESS variable Clk0, Clk1 : integer := 0; begin RAS_clk <= '1'; wait for 0.5 ns; RAS_clk <= '0'; wait for 0.5 ns; if Clk0 > 100 or Clk1 > 100 then wait; else if Clk = '1' and Cke = '1' then Clk0 := 0; Clk1 := Clk1 + 1; elsif Clk = '0' and Cke = '1' then Clk0 := Clk0 + 1; Clk1 := 0; end if; end if; END PROCESS; -- System Clock int_clk : PROCESS (Clk) begin IF Clk'LAST_VALUE = '0' AND Clk = '1' THEN --' CkeZ <= TO_BIT(Cke, '1'); END IF; Sys_clk <= CkeZ AND TO_BIT(Clk, '0'); END PROCESS; state_register : PROCESS -- NOTE: The extra bits in RAM_TYPE is for checking memory access. A logic 1 means -- the location is in use. This will be checked when doing memory DUMP. TYPE ram_type IS ARRAY (2**col_bits - 1 DOWNTO 0) OF BIT_VECTOR (data_bits DOWNTO 0); TYPE ram_pntr IS ACCESS ram_type; TYPE ram_stor IS ARRAY (2**addr_bits - 1 DOWNTO 0) OF ram_pntr; VARIABLE Bank0 : ram_stor; VARIABLE Bank1 : ram_stor; VARIABLE Bank2 : ram_stor; VARIABLE Bank3 : ram_stor; VARIABLE Row_index, Col_index : INTEGER := 0; VARIABLE Dq_temp : BIT_VECTOR (data_bits DOWNTO 0) := (OTHERS => '0'); VARIABLE Col_addr : Array4xCBV; VARIABLE Bank_addr : Array4x2BV; VARIABLE Dqm_reg0, Dqm_reg1 : BIT_VECTOR (1 DOWNTO 0) := "00"; VARIABLE Bank, Previous_bank : BIT_VECTOR (1 DOWNTO 0) := "00"; VARIABLE B0_row_addr, B1_row_addr, B2_row_addr, B3_row_addr : BIT_VECTOR (addr_bits - 1 DOWNTO 0) := (OTHERS => '0'); VARIABLE Col_brst : BIT_VECTOR (col_bits - 1 DOWNTO 0) := (OTHERS => '0'); VARIABLE Row : BIT_VECTOR (addr_bits - 1 DOWNTO 0) := (OTHERS => '0'); VARIABLE Col : BIT_VECTOR (col_bits - 1 DOWNTO 0) := (OTHERS => '0'); VARIABLE Burst_counter : INTEGER := 0; VARIABLE Command : Array_state; VARIABLE Bank_precharge : Array4x2BV; VARIABLE A10_precharge : Array4xB := ('0' & '0' & '0' & '0'); VARIABLE Auto_precharge : Array4xB := ('0' & '0' & '0' & '0'); VARIABLE Read_precharge : Array4xB := ('0' & '0' & '0' & '0'); VARIABLE Write_precharge : Array4xB := ('0' & '0' & '0' & '0'); VARIABLE RW_interrupt_read : Array4xB := ('0' & '0' & '0' & '0'); VARIABLE RW_interrupt_write : Array4xB := ('0' & '0' & '0' & '0'); VARIABLE RW_interrupt_bank : BIT_VECTOR (1 DOWNTO 0) := "00"; VARIABLE Count_time : Array4xT := (0 ns & 0 ns & 0 ns & 0 ns); VARIABLE Count_precharge : Array4xI := (0 & 0 & 0 & 0); VARIABLE Data_in_enable, Data_out_enable : BIT := '0'; VARIABLE Pc_b0, Pc_b1, Pc_b2, Pc_b3 : BIT := '0'; VARIABLE Act_b0, Act_b1, Act_b2, Act_b3 : BIT := '0'; -- Timing Check VARIABLE MRD_chk : INTEGER := 0; VARIABLE WR_counter : Array4xI := (0 & 0 & 0 & 0); VARIABLE WR_time : Array4xT := (0 ns & 0 ns & 0 ns & 0 ns); VARIABLE WR_chkp : Array4xT := (0 ns & 0 ns & 0 ns & 0 ns); VARIABLE RC_chk, RRD_chk : TIME := 0 ns; VARIABLE RAS_chk0, RAS_chk1, RAS_chk2, RAS_chk3 : TIME := 0 ns; VARIABLE RCD_chk0, RCD_chk1, RCD_chk2, RCD_chk3 : TIME := 0 ns; VARIABLE RP_chk0, RP_chk1, RP_chk2, RP_chk3 : TIME := 0 ns; -- Load and Dumb variables FILE file_load : TEXT IS IN fname; -- Data load FILE file_dump : TEXT IS OUT "dumpdata.txt"; -- Data dump VARIABLE bank_load : bit_vector ( 1 DOWNTO 0); VARIABLE rows_load : BIT_VECTOR (12 DOWNTO 0); VARIABLE cols_load : BIT_VECTOR ( 8 DOWNTO 0); VARIABLE data_load : BIT_VECTOR (15 DOWNTO 0); VARIABLE i, j : INTEGER; VARIABLE good_load : BOOLEAN; VARIABLE l : LINE; variable load : std_logic := '1'; variable dump : std_logic := '0'; variable ch : character; variable rectype : bit_vector(3 downto 0); variable recaddr : bit_vector(31 downto 0); variable reclen : bit_vector(7 downto 0); variable recdata : bit_vector(0 to 16*8-1); -- Initialize empty rows PROCEDURE Init_mem (Bank : bit_vector (1 DOWNTO 0); Row_index : INTEGER) IS VARIABLE i, j : INTEGER := 0; BEGIN IF Bank = "00" THEN IF Bank0 (Row_index) = NULL THEN -- Check to see if row empty Bank0 (Row_index) := NEW ram_type; -- Open new row for access FOR i IN (2**col_bits - 1) DOWNTO 0 LOOP -- Filled row with zeros FOR j IN (data_bits) DOWNTO 0 LOOP Bank0 (Row_index) (i) (j) := '0'; END LOOP; END LOOP; END IF; ELSIF Bank = "01" THEN IF Bank1 (Row_index) = NULL THEN Bank1 (Row_index) := NEW ram_type; FOR i IN (2**col_bits - 1) DOWNTO 0 LOOP FOR j IN (data_bits) DOWNTO 0 LOOP Bank1 (Row_index) (i) (j) := '0'; END LOOP; END LOOP; END IF; ELSIF Bank = "10" THEN IF Bank2 (Row_index) = NULL THEN Bank2 (Row_index) := NEW ram_type; FOR i IN (2**col_bits - 1) DOWNTO 0 LOOP FOR j IN (data_bits) DOWNTO 0 LOOP Bank2 (Row_index) (i) (j) := '0'; END LOOP; END LOOP; END IF; ELSIF Bank = "11" THEN IF Bank3 (Row_index) = NULL THEN Bank3 (Row_index) := NEW ram_type; FOR i IN (2**col_bits - 1) DOWNTO 0 LOOP FOR j IN (data_bits) DOWNTO 0 LOOP Bank3 (Row_index) (i) (j) := '0'; END LOOP; END LOOP; END IF; END IF; END; -- Burst Counter PROCEDURE Burst_decode IS VARIABLE Col_int : INTEGER := 0; VARIABLE Col_vec, Col_temp : BIT_VECTOR (col_bits - 1 DOWNTO 0) := (OTHERS => '0'); BEGIN -- Advance Burst Counter Burst_counter := Burst_counter + 1; -- Burst Type IF Mode_reg (3) = '0' THEN Col_int := TO_INTEGER(Col); Col_int := Col_int + 1; TO_BITVECTOR (Col_int, Col_temp); ELSIF Mode_reg (3) = '1' THEN TO_BITVECTOR (Burst_counter, Col_vec); Col_temp (2) := Col_vec (2) XOR Col_brst (2); Col_temp (1) := Col_vec (1) XOR Col_brst (1); Col_temp (0) := Col_vec (0) XOR Col_brst (0); END IF; -- Burst Length IF Burst_length_2 = '1' THEN Col (0) := Col_temp (0); ELSIF Burst_length_4 = '1' THEN Col (1 DOWNTO 0) := Col_temp (1 DOWNTO 0); ELSIF Burst_length_8 = '1' THEN Col (2 DOWNTO 0) := Col_temp (2 DOWNTO 0); ELSE Col := Col_temp; END IF; -- Burst Read Single Write IF Write_burst_mode = '1' AND Data_in_enable = '1' THEN Data_in_enable := '0'; END IF; -- Data counter IF Burst_length_1 = '1' THEN
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -