📄 ataioreg.c
字号:
//
//*************************************************************
int reg_non_data_lba( int dev, int cmd,
int fr, int sc,
long lba )
{
unsigned int cyl;
int head, sect;
sect = (int) ( lba & 0x000000ffL );
lba = lba >> 8;
cyl = (int) ( lba & 0x0000ffff );
lba = lba >> 16;
head = ( (int) ( lba & 0x0fL ) ) | 0x40;
return reg_non_data( dev, cmd,
fr, sc,
cyl, head, sect );
}
//*************************************************************
//
// reg_non_data() - Execute a non-data command.
//
// Note special handling for Execute Device Diagnostics
// command when there is no device 0.
//
// See ATA-2 Section 9.5, ATA-3 Section 9.5,
// ATA-4 Section 8.8 Figure 12. Also see Section 8.5.
//
//*************************************************************
int reg_non_data( int dev, int cmd,
int fr, int sc,
unsigned int cyl, int head, int sect )
{
unsigned char secCnt;
unsigned char secNum;
unsigned char devHead;
unsigned char devCtrl;
unsigned char cylLow;
unsigned char cylHigh;
unsigned char status;
// mark start of ND cmd in low level trace
trc_llt( 0, 0, TRC_LLT_S_ND );
// setup register values
devCtrl = CB_DC_HD15 | ( int_use_intr_flag ? 0 : CB_DC_NIEN );
devHead = dev ? CB_DH_DEV1 : CB_DH_DEV0;
devHead = devHead | ( head & 0x4f );
cylLow = cyl & 0x00ff;
cylHigh = ( cyl & 0xff00 ) >> 8;
// Reset error return data.
sub_zero_return_data();
reg_cmd_info.flg = TRC_FLAG_CMD;
reg_cmd_info.ct = TRC_TYPE_AND;
reg_cmd_info.cmd = cmd;
reg_cmd_info.fr1 = fr;
reg_cmd_info.sc1 = sc;
reg_cmd_info.sn1 = sect;
reg_cmd_info.cl1 = cylLow;
reg_cmd_info.ch1 = cylHigh;
reg_cmd_info.dh1 = devHead;
reg_cmd_info.dc1 = devCtrl;
// Set command time out.
tmr_set_timeout();
// PAY ATTENTION HERE
// If the caller is attempting a Device Reset command, then
// don't do most of the normal stuff. Device Reset has no
// parameters, should not generate an interrupt and it is the
// only command that can be written to the Command register
// when a device has BSY=1 (a very strange command!). Not
// all devices support this command (even some ATAPI devices
// don't support the command.
if ( cmd != CMD_DEVICE_RESET )
{
// Select the drive - call the sub_select function.
// Quit now if this fails.
if ( sub_select( dev ) )
{
sub_trace_command();
trc_llt( 0, 0, TRC_LLT_E_ND );
return 1;
}
// Set up all the registers except the command register.
pio_outbyte( CB_DC, devCtrl );
pio_outbyte( CB_FR, fr );
pio_outbyte( CB_SC, sc );
pio_outbyte( CB_SN, sect );
pio_outbyte( CB_CL, cylLow );
pio_outbyte( CB_CH, cylHigh );
pio_outbyte( CB_DH, devHead );
// For interrupt mode,
// Take over INT 7x and initialize interrupt controller
// and reset interrupt flag.
int_save_int_vect();
}
// Start the command by setting the Command register. The drive
// should immediately set BUSY status.
pio_outbyte( CB_CMD, cmd );
// Waste some time by reading the alternate status a few times.
// This gives the drive time to set BUSY in the status register on
// really fast systems. If we don't do this, a slow drive on a fast
// system may not set BUSY fast enough and we would think it had
// completed the command when it really had not even started the
// command yet.
DELAY400NS;
if ( reg_config_info[0] == REG_CONFIG_TYPE_ATAPI )
sub_atapi_delay( 0 );
if ( reg_config_info[1] == REG_CONFIG_TYPE_ATAPI )
sub_atapi_delay( 1 );
// IF
// This is an Exec Dev Diag command (cmd=0x90)
// and there is no device 0 then
// there will be no interrupt. So we must
// poll device 1 until it allows register
// access and then do normal polling of the Status
// register for BSY=0.
// ELSE
// IF
// This is a Dev Reset command (cmd=0x08) then
// there should be no interrupt. So we must
// poll for BSY=0.
// ELSE
// Do the normal wait for interrupt or polling for
// completion.
if ( ( cmd == CMD_EXECUTE_DEVICE_DIAGNOSTIC )
&&
( reg_config_info[0] == REG_CONFIG_TYPE_NONE )
)
{
trc_llt( 0, 0, TRC_LLT_PNBSY );
while ( 1 )
{
pio_outbyte( CB_DH, CB_DH_DEV1 );
DELAY400NS;
secCnt = pio_inbyte( CB_SC );
secNum = pio_inbyte( CB_SN );
if ( ( secCnt == 0x01 ) && ( secNum == 0x01 ) )
break;
if ( tmr_chk_timeout() )
{
trc_llt( 0, 0, TRC_LLT_TOUT );
reg_cmd_info.to = 1;
reg_cmd_info.ec = 24;
trc_llt( 0, reg_cmd_info.ec, TRC_LLT_ERROR );
break;
}
}
}
else
{
if ( cmd == CMD_DEVICE_RESET )
{
// Wait for not BUSY -or- wait for time out.
reg_wait_poll( 0, 23 );
}
else
{
// Wait for INT 7x -or- wait for not BUSY -or- wait for time out.
reg_wait_poll( 22, 23 );
}
}
// Read the primary status register. In keeping with the rules
// stated above the primary status register is read only
// ONCE.
status = pio_inbyte( CB_STAT );
// Error if BUSY, DEVICE FAULT, DRQ or ERROR status now.
if ( reg_cmd_info.ec == 0 )
{
if ( status & ( CB_STAT_BSY | CB_STAT_DF | CB_STAT_DRQ | CB_STAT_ERR ) )
{
reg_cmd_info.ec = 21;
trc_llt( 0, reg_cmd_info.ec, TRC_LLT_ERROR );
}
}
// read the output registers and trace the command.
sub_trace_command();
// NON_DATA_DONE:
// For interrupt mode, restore the INT 7x vector.
int_restore_int_vect();
// mark end of ND cmd in low level trace
trc_llt( 0, 0, TRC_LLT_E_ND );
// All done. The return values of this function are described in
// ATAIO.H.
if ( reg_cmd_info.ec )
return 1;
return 0;
}
//*************************************************************
//
// reg_pio_data_in_lba() - Easy way to execute a PIO Data In command
// using an LBA sector address.
//
//*************************************************************
int reg_pio_data_in_lba( int dev, int cmd,
int fr, int sc,
long lba,
unsigned seg, unsigned off,
int numSect, int multiCnt )
{
unsigned int cyl;
int head, sect;
sect = (int) ( lba & 0x000000ffL );
lba = lba >> 8;
cyl = (int) ( lba & 0x0000ffff );
lba = lba >> 16;
head = ( (int) ( lba & 0x0fL ) ) | 0x40;
return reg_pio_data_in( dev, cmd,
fr, sc,
cyl, head, sect,
seg, off,
numSect, multiCnt );
}
//*************************************************************
//
// reg_pio_data_in() - Execute a PIO Data In command.
//
// See ATA-2 Section 9.3, ATA-3 Section 9.3,
// ATA-4 Section 8.6 Figure 10.
//
//*************************************************************
int reg_pio_data_in( int dev, int cmd,
int fr, int sc,
unsigned int cyl, int head, int sect,
unsigned seg, unsigned off,
int numSect, int multiCnt )
{
unsigned char devHead;
unsigned char devCtrl;
unsigned char cylLow;
unsigned char cylHigh;
unsigned char status;
unsigned int wordCnt;
// mark start of PDI cmd in low level trace
trc_llt( 0, 0, TRC_LLT_S_PDI );
// setup register values and adjust parameters
devCtrl = CB_DC_HD15 | ( int_use_intr_flag ? 0 : CB_DC_NIEN );
devHead = dev ? CB_DH_DEV1 : CB_DH_DEV0;
devHead = devHead | ( head & 0x4f );
cylLow = cyl & 0x00ff;
cylHigh = ( cyl & 0xff00 ) >> 8;
// these commands transfer only 1 sector
if ( ( cmd == CMD_IDENTIFY_DEVICE )
|| ( cmd == CMD_IDENTIFY_DEVICE_PACKET )
|| ( cmd == CMD_READ_BUFFER )
)
numSect = 1;
// only Read Multiple uses multiCnt
if ( cmd != CMD_READ_MULTIPLE )
multiCnt = 1;
// Reset error return data.
sub_zero_return_data();
reg_cmd_info.flg = TRC_FLAG_CMD;
reg_cmd_info.ct = TRC_TYPE_APDI;
reg_cmd_info.cmd = cmd;
reg_cmd_info.fr1 = fr;
reg_cmd_info.sc1 = sc;
reg_cmd_info.sn1 = sect;
reg_cmd_info.cl1 = cylLow;
reg_cmd_info.ch1 = cylHigh;
reg_cmd_info.dh1 = devHead;
reg_cmd_info.dc1 = devCtrl;
// Set command time out.
tmr_set_timeout();
// Select the drive - call the sub_select function.
// Quit now if this fails.
if ( sub_select( dev ) )
{
sub_trace_command();
trc_llt( 0, 0, TRC_LLT_E_PDI );
return 1;
}
// Set up all the registers except the command register.
pio_outbyte( CB_DC, devCtrl );
pio_outbyte( CB_FR, fr );
pio_outbyte( CB_SC, sc );
pio_outbyte( CB_SN, sect );
pio_outbyte( CB_CL, cylLow );
pio_outbyte( CB_CH, cylHigh );
pio_outbyte( CB_DH, devHead );
// For interrupt mode,
// Take over INT 7x and initialize interrupt controller
// and reset interrupt flag.
int_save_int_vect();
// Start the command by setting the Command register. The drive
// should immediately set BUSY status.
pio_outbyte( CB_CMD, cmd );
// Waste some time by reading the alternate status a few times.
// This gives the drive time to set BUSY in the status register on
// really fast systems. If we don't do this, a slow drive on a fast
// system may not set BUSY fast enough and we would think it had
// completed the command when it really had not even started the
// command yet.
DELAY400NS;
// Loop to read each sector.
while ( 1 )
{
// READ_LOOP:
//
// NOTE NOTE NOTE ... The primary status register (1f7) MUST NOT be
// read more than ONCE for each sector transferred! When the
// primary status register is read, the drive resets IRQ 14. The
// alternate status register (3f6) can be read any number of times.
// After INT 7x read the the primary status register ONCE
// and transfer the 256 words (REP INSW). AS SOON as BOTH the
// primary status register has been read AND the last of the 256
// words has been read, the drive is allowed to generate the next
// IRQ 14 (newer and faster drives could generate the next IRQ 14 in
// 50 microseconds or less). If the primary status register is read
// more than once, there is the possibility of a race between the
// drive and the software and the next IRQ 14 could be reset before
// the system interrupt controller sees it.
// Wait for INT 7x -or- wait for not BUSY -or- wait for time out.
sub_atapi_delay( dev );
reg_wait_poll( 34, 35 );
// Read the primary status register. In keeping with the rules
// stated above the primary status register is read only
// ONCE.
status = pio_inbyte( CB_STAT );
// If there was a time out error, go to READ_DONE.
if ( reg_cmd_info.ec )
break; // go to READ_DONE
// If BSY=0 and DRQ=1, transfer the data,
// even if we find out there is an error later.
if ( ( status & ( CB_STAT_BSY | CB_STAT_DRQ ) ) == CB_STAT_DRQ )
{
// do the slow data transfer thing
if ( reg_slow_xfer_flag )
{
if ( numSect <= reg_slow_xfer_flag )
{
sub_xfer_delay();
reg_slow_xfer_flag = 0;
}
}
// increment number of DRQ packets
reg_cmd_info.drqPackets ++ ;
// determine the number of sectors to transfer
wordCnt = multiCnt ? multiCnt : 1;
if ( wordCnt > numSect )
wordCnt = numSect;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -