⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ataioreg.c

📁 ~{S2EL~}wdm~{G}6/~}
💻 C
📖 第 1 页 / 共 4 页
字号:
//
//*************************************************************

int reg_non_data_lba( int dev, int cmd,
                      int fr, int sc,
                      long lba )

{
   unsigned int cyl;
   int head, sect;

   sect = (int) ( lba & 0x000000ffL );
   lba = lba >> 8;
   cyl = (int) ( lba & 0x0000ffff );
   lba = lba >> 16;
   head = ( (int) ( lba & 0x0fL ) ) | 0x40;
   return reg_non_data( dev, cmd,
                        fr, sc,
                        cyl, head, sect );
}

//*************************************************************
//
// reg_non_data() - Execute a non-data command.
//
// Note special handling for Execute Device Diagnostics
// command when there is no device 0.
//
// See ATA-2 Section 9.5, ATA-3 Section 9.5,
// ATA-4 Section 8.8 Figure 12.  Also see Section 8.5.
//
//*************************************************************

int reg_non_data( int dev, int cmd,
                   int fr, int sc,
                   unsigned int cyl, int head, int sect )

{
   unsigned char secCnt;
   unsigned char secNum;
   unsigned char devHead;
   unsigned char devCtrl;
   unsigned char cylLow;
   unsigned char cylHigh;
   unsigned char status;

   // mark start of ND cmd in low level trace

   trc_llt( 0, 0, TRC_LLT_S_ND );

   // setup register values

   devCtrl = CB_DC_HD15 | ( int_use_intr_flag ? 0 : CB_DC_NIEN );
   devHead = dev ? CB_DH_DEV1 : CB_DH_DEV0;
   devHead = devHead | ( head & 0x4f );
   cylLow = cyl & 0x00ff;
   cylHigh = ( cyl & 0xff00 ) >> 8;

   // Reset error return data.

   sub_zero_return_data();
   reg_cmd_info.flg = TRC_FLAG_CMD;
   reg_cmd_info.ct  = TRC_TYPE_AND;
   reg_cmd_info.cmd = cmd;
   reg_cmd_info.fr1 = fr;
   reg_cmd_info.sc1 = sc;
   reg_cmd_info.sn1 = sect;
   reg_cmd_info.cl1 = cylLow;
   reg_cmd_info.ch1 = cylHigh;
   reg_cmd_info.dh1 = devHead;
   reg_cmd_info.dc1 = devCtrl;

   // Set command time out.

   tmr_set_timeout();

   // PAY ATTENTION HERE
   // If the caller is attempting a Device Reset command, then
   // don't do most of the normal stuff.  Device Reset has no
   // parameters, should not generate an interrupt and it is the
   // only command that can be written to the Command register
   // when a device has BSY=1 (a very strange command!).  Not
   // all devices support this command (even some ATAPI devices
   // don't support the command.

   if ( cmd != CMD_DEVICE_RESET )
   {
      // Select the drive - call the sub_select function.
      // Quit now if this fails.

      if ( sub_select( dev ) )
      {
         sub_trace_command();
         trc_llt( 0, 0, TRC_LLT_E_ND );
         return 1;
      }

      // Set up all the registers except the command register.

      pio_outbyte( CB_DC, devCtrl );
      pio_outbyte( CB_FR, fr );
      pio_outbyte( CB_SC, sc );
      pio_outbyte( CB_SN, sect );
      pio_outbyte( CB_CL, cylLow );
      pio_outbyte( CB_CH, cylHigh );
      pio_outbyte( CB_DH, devHead );

      // For interrupt mode,
      // Take over INT 7x and initialize interrupt controller
      // and reset interrupt flag.

      int_save_int_vect();
   }

   // Start the command by setting the Command register.  The drive
   // should immediately set BUSY status.

   pio_outbyte( CB_CMD, cmd );

   // Waste some time by reading the alternate status a few times.
   // This gives the drive time to set BUSY in the status register on
   // really fast systems.  If we don't do this, a slow drive on a fast
   // system may not set BUSY fast enough and we would think it had
   // completed the command when it really had not even started the
   // command yet.

   DELAY400NS;

   if ( reg_config_info[0] == REG_CONFIG_TYPE_ATAPI )
      sub_atapi_delay( 0 );
   if ( reg_config_info[1] == REG_CONFIG_TYPE_ATAPI )
      sub_atapi_delay( 1 );

   // IF
   //    This is an Exec Dev Diag command (cmd=0x90)
   //    and there is no device 0 then
   //    there will be no interrupt. So we must
   //    poll device 1 until it allows register
   //    access and then do normal polling of the Status
   //    register for BSY=0.
   // ELSE
   // IF
   //    This is a Dev Reset command (cmd=0x08) then
   //    there should be no interrupt.  So we must
   //    poll for BSY=0.
   // ELSE
   //    Do the normal wait for interrupt or polling for
   //    completion.

   if ( ( cmd == CMD_EXECUTE_DEVICE_DIAGNOSTIC )
        &&
        ( reg_config_info[0] == REG_CONFIG_TYPE_NONE )
      )
   {
      trc_llt( 0, 0, TRC_LLT_PNBSY );
      while ( 1 )
      {
         pio_outbyte( CB_DH, CB_DH_DEV1 );
         DELAY400NS;
         secCnt = pio_inbyte( CB_SC );
         secNum = pio_inbyte( CB_SN );
         if ( ( secCnt == 0x01 ) && ( secNum == 0x01 ) )
            break;
         if ( tmr_chk_timeout() )
         {
            trc_llt( 0, 0, TRC_LLT_TOUT );
            reg_cmd_info.to = 1;
            reg_cmd_info.ec = 24;
            trc_llt( 0, reg_cmd_info.ec, TRC_LLT_ERROR );
            break;
         }
      }
   }
   else
   {
      if ( cmd == CMD_DEVICE_RESET )
      {
         // Wait for not BUSY -or- wait for time out.

         reg_wait_poll( 0, 23 );
      }
      else
      {
         // Wait for INT 7x -or- wait for not BUSY -or- wait for time out.

         reg_wait_poll( 22, 23 );
      }
   }

   // Read the primary status register.  In keeping with the rules
   // stated above the primary status register is read only
   // ONCE.

   status = pio_inbyte( CB_STAT );

   // Error if BUSY, DEVICE FAULT, DRQ or ERROR status now.

   if ( reg_cmd_info.ec == 0 )
   {
      if ( status & ( CB_STAT_BSY | CB_STAT_DF | CB_STAT_DRQ | CB_STAT_ERR ) )
      {
         reg_cmd_info.ec = 21;
         trc_llt( 0, reg_cmd_info.ec, TRC_LLT_ERROR );
      }
   }

   // read the output registers and trace the command.

   sub_trace_command();

   // NON_DATA_DONE:

   // For interrupt mode, restore the INT 7x vector.

   int_restore_int_vect();

   // mark end of ND cmd in low level trace

   trc_llt( 0, 0, TRC_LLT_E_ND );

   // All done.  The return values of this function are described in
   // ATAIO.H.

   if ( reg_cmd_info.ec )
      return 1;
   return 0;
}

//*************************************************************
//
// reg_pio_data_in_lba() - Easy way to execute a PIO Data In command
//                         using an LBA sector address.
//
//*************************************************************

int reg_pio_data_in_lba( int dev, int cmd,
                         int fr, int sc,
                         long lba,
                         unsigned seg, unsigned off,
                         int numSect, int multiCnt )

{
   unsigned int cyl;
   int head, sect;

   sect = (int) ( lba & 0x000000ffL );
   lba = lba >> 8;
   cyl = (int) ( lba & 0x0000ffff );
   lba = lba >> 16;
   head = ( (int) ( lba & 0x0fL ) ) | 0x40;
   return reg_pio_data_in( dev, cmd,
                           fr, sc,
                           cyl, head, sect,
                           seg, off,
                           numSect, multiCnt );
}

//*************************************************************
//
// reg_pio_data_in() - Execute a PIO Data In command.
//
// See ATA-2 Section 9.3, ATA-3 Section 9.3,
// ATA-4 Section 8.6 Figure 10.
//
//*************************************************************

int reg_pio_data_in( int dev, int cmd,
                     int fr, int sc,
                     unsigned int cyl, int head, int sect,
                     unsigned seg, unsigned off,
                     int numSect, int multiCnt )

{
   unsigned char devHead;
   unsigned char devCtrl;
   unsigned char cylLow;
   unsigned char cylHigh;
   unsigned char status;
   unsigned int wordCnt;

   // mark start of PDI cmd in low level trace

   trc_llt( 0, 0, TRC_LLT_S_PDI );

   // setup register values and adjust parameters

   devCtrl = CB_DC_HD15 | ( int_use_intr_flag ? 0 : CB_DC_NIEN );
   devHead = dev ? CB_DH_DEV1 : CB_DH_DEV0;
   devHead = devHead | ( head & 0x4f );
   cylLow = cyl & 0x00ff;
   cylHigh = ( cyl & 0xff00 ) >> 8;
   // these commands transfer only 1 sector
   if (    ( cmd == CMD_IDENTIFY_DEVICE )
        || ( cmd == CMD_IDENTIFY_DEVICE_PACKET )
        || ( cmd == CMD_READ_BUFFER )
      )
      numSect = 1;
   // only Read Multiple uses multiCnt
   if ( cmd != CMD_READ_MULTIPLE )
      multiCnt = 1;

   // Reset error return data.

   sub_zero_return_data();
   reg_cmd_info.flg = TRC_FLAG_CMD;
   reg_cmd_info.ct  = TRC_TYPE_APDI;
   reg_cmd_info.cmd = cmd;
   reg_cmd_info.fr1 = fr;
   reg_cmd_info.sc1 = sc;
   reg_cmd_info.sn1 = sect;
   reg_cmd_info.cl1 = cylLow;
   reg_cmd_info.ch1 = cylHigh;
   reg_cmd_info.dh1 = devHead;
   reg_cmd_info.dc1 = devCtrl;

   // Set command time out.

   tmr_set_timeout();

   // Select the drive - call the sub_select function.
   // Quit now if this fails.

   if ( sub_select( dev ) )
   {
      sub_trace_command();
      trc_llt( 0, 0, TRC_LLT_E_PDI );
      return 1;
   }

   // Set up all the registers except the command register.

   pio_outbyte( CB_DC, devCtrl );
   pio_outbyte( CB_FR, fr );
   pio_outbyte( CB_SC, sc );
   pio_outbyte( CB_SN, sect );
   pio_outbyte( CB_CL, cylLow );
   pio_outbyte( CB_CH, cylHigh );
   pio_outbyte( CB_DH, devHead );

   // For interrupt mode,
   // Take over INT 7x and initialize interrupt controller
   // and reset interrupt flag.

   int_save_int_vect();

   // Start the command by setting the Command register.  The drive
   // should immediately set BUSY status.

   pio_outbyte( CB_CMD, cmd );

   // Waste some time by reading the alternate status a few times.
   // This gives the drive time to set BUSY in the status register on
   // really fast systems.  If we don't do this, a slow drive on a fast
   // system may not set BUSY fast enough and we would think it had
   // completed the command when it really had not even started the
   // command yet.

   DELAY400NS;

   // Loop to read each sector.

   while ( 1 )
   {
      // READ_LOOP:
      //
      // NOTE NOTE NOTE ...  The primary status register (1f7) MUST NOT be
      // read more than ONCE for each sector transferred!  When the
      // primary status register is read, the drive resets IRQ 14.  The
      // alternate status register (3f6) can be read any number of times.
      // After INT 7x read the the primary status register ONCE
      // and transfer the 256 words (REP INSW).  AS SOON as BOTH the
      // primary status register has been read AND the last of the 256
      // words has been read, the drive is allowed to generate the next
      // IRQ 14 (newer and faster drives could generate the next IRQ 14 in
      // 50 microseconds or less).  If the primary status register is read
      // more than once, there is the possibility of a race between the
      // drive and the software and the next IRQ 14 could be reset before
      // the system interrupt controller sees it.

      // Wait for INT 7x -or- wait for not BUSY -or- wait for time out.

      sub_atapi_delay( dev );
      reg_wait_poll( 34, 35 );

      // Read the primary status register.  In keeping with the rules
      // stated above the primary status register is read only
      // ONCE.

      status = pio_inbyte( CB_STAT );

      // If there was a time out error, go to READ_DONE.

      if ( reg_cmd_info.ec )
         break;   // go to READ_DONE

      // If BSY=0 and DRQ=1, transfer the data,
      // even if we find out there is an error later.

      if ( ( status & ( CB_STAT_BSY | CB_STAT_DRQ ) ) == CB_STAT_DRQ )
      {
         // do the slow data transfer thing

         if ( reg_slow_xfer_flag )
         {
            if ( numSect <= reg_slow_xfer_flag )
            {
               sub_xfer_delay();
               reg_slow_xfer_flag = 0;
            }
         }

         // increment number of DRQ packets

         reg_cmd_info.drqPackets ++ ;

         // determine the number of sectors to transfer

         wordCnt = multiCnt ? multiCnt : 1;
         if ( wordCnt > numSect )
            wordCnt = numSect;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -