📄 delaunay.pas
字号:
Completes^[ntri] := False;
End;
end; //the first for
//Remove triangles with supertriangle vertices
//These are triangles which have a vertex number greater than NVERT
i:= 0;
repeat
i := i + 1;
If (FTriangles^[i].vv0 > nvert) Or (FTriangles^[i].vv1 > nvert) Or (FTriangles^[i].vv2 > nvert) Then
begin
FTriangles^[i].vv0 := FTriangles^[ntri].vv0;
FTriangles^[i].vv1 := FTriangles^[ntri].vv1;
FTriangles^[i].vv2 := FTriangles^[ntri].vv2;
i := i - 1;
ntri := ntri - 1;
End;
until i>=ntri;
Triangulate := ntri;
//Free memory
FreeMem(Completes, sizeof(Completes^));
FreeMem(Edges, sizeof(Edges^));
End;
function TDelaunay.InCircle(xp, yp, x1, y1, x2, y2, x3, y3: Double;
var xc: Double; var yc: Double; var r: Double; j: Integer): Boolean;
//Return TRUE if the point (xp,yp) lies inside the circumcircle
//made up by points (x1,y1) (x2,y2) (x3,y3)
//The circumcircle centre is returned in (xc,yc) and the radius r
//NOTE: A point on the edge is inside the circumcircle
var
eps: Double;
m1: Double;
m2: Double;
mx1: Double;
mx2: Double;
my1: Double;
my2: Double;
dx: Double;
dy: Double;
rsqr: Double;
drsqr: Double;
begin
eps:= 0.000001;
InCircle := False;
//Check if xc,yc and r have already been calculated
if FTriangles^[j].PreCalc=1 then
begin
xc := FTriangles^[j].xc;
yc := FTriangles^[j].yc;
r := FTriangles^[j].r;
rsqr := r*r;
dx := xp - xc;
dy := yp - yc;
drsqr := dx * dx + dy * dy;
end
else
begin
If (Abs(y1 - y2) < eps) And (Abs(y2 - y3) < eps) Then
begin
ShowMessage('INCIRCUM - F - Points are coincident !!');
Exit;
end;
If Abs(y2 - y1) < eps Then
begin
m2 := -(x3 - x2) / (y3 - y2);
mx2 := (x2 + x3) / 2;
my2 := (y2 + y3) / 2;
xc := (x2 + x1) / 2;
yc := m2 * (xc - mx2) + my2;
end
Else If Abs(y3 - y2) < eps Then
begin
m1 := -(x2 - x1) / (y2 - y1);
mx1 := (x1 + x2) / 2;
my1 := (y1 + y2) / 2;
xc := (x3 + x2) / 2;
yc := m1 * (xc - mx1) + my1;
end
Else
begin
m1 := -(x2 - x1) / (y2 - y1);
m2 := -(x3 - x2) / (y3 - y2);
mx1 := (x1 + x2) / 2;
mx2 := (x2 + x3) / 2;
my1 := (y1 + y2) / 2;
my2 := (y2 + y3) / 2;
if (m1-m2)<>0 then //se
begin
xc := (m1 * mx1 - m2 * mx2 + my2 - my1) / (m1 - m2);
yc := m1 * (xc - mx1) + my1;
end
else
begin
xc:= (x1+x2+x3)/3;
yc:= (y1+y2+y3)/3;
end;
end;//else
dx := x2 - xc;
dy := y2 - yc;
rsqr := dx * dx + dy * dy;
r := Sqrt(rsqr);
dx := xp - xc;
dy := yp - yc;
drsqr := dx * dx + dy * dy;
//store the xc,yc and r for later use
FTriangles^[j].PreCalc:=1;
FTriangles^[j].xc:=xc;
FTriangles^[j].yc:=yc;
FTriangles^[j].r:=r;
end; //the big else
If drsqr <= rsqr Then InCircle := True;
end;
Function TDelaunay.WhichSide(xp, yp, x1, y1, x2, y2: Double): Integer;
//Determines which side of a line the point (xp,yp) lies.
//The line goes from (x1,y1) to (x2,y2)
//Returns -1 for a point to the left
// 0 for a point on the line
// +1 for a point to the right
var
equation: Double;
begin
equation := ((yp - y1) * (x2 - x1)) - ((y2 - y1) * (xp - x1));
If equation > 0 Then
WhichSide := -1
Else If equation = 0 Then
WhichSide := 0
Else
WhichSide := 1;
End;
procedure TDelaunay.Draw;
var
i: Integer;
begin
// Clear the form canvas
ClearBackPage;
TempBuffer.Canvas.Brush.Color := clwhite;
//Draw the created triangles
if (FTriangleCount > 0) then
For i:= 1 To FTriangleCount do
begin
TempBuffer.Canvas.Polygon([Point(Trunc(FVertexs^[FTriangles^[i].vv0].x), Trunc(FVertexs^[FTriangles^[i].vv0].y)),
Point(Trunc(FVertexs^[FTriangles^[i].vv1].x), Trunc(FVertexs^[FTriangles^[i].vv1].y)),
Point(Trunc(FVertexs^[FTriangles^[i].vv2].x), Trunc(FVertexs^[FTriangles^[i].vv2].y))]);
end;
FlipBackPage;
end;
procedure TDelaunay.ClearBackPage;
begin
TempBuffer.Height:=TargetForm.Height;
TempBuffer.Width:=TargetForm.Width;
TempBuffer.Canvas.Brush.Color := clSilver;
TempBuffer.Canvas.FillRect(Rect(0,0,TargetForm.Width,TargetForm.Height));
end;
procedure TDelaunay.FlipBackPage;
var
ARect : TRect;
begin
ARect := Rect(0,0,TargetForm.Width,TargetForm.Height);
TargetForm.Canvas.CopyRect(ARect, TempBuffer.Canvas, ARect);
end;
function TDelaunay.GetPointCount: integer;
begin
Result:= FPointCount-1;
end;
procedure TDelaunay.ScatterContour(ZCount: Integer; Z: Array of Single);
var
i,j,m: Integer;
Deside: Integer;
CastTab : TCastArray;
sH : TVectorL3I; H,xH,yH : TVectorL3D;
TempD1,TempD2,dMin,dMax: Double ;
x1,x2,y1,y2: Double; //等值点坐标
ARecord: PPointPair; //记录点对
//插值计算
Function xSec(p1,p2:Integer): Double;
Begin result:= (H[p2]*xH[p1]-H[p1]*xH[p2])/(H[p2]-H[p1]); End; Function ySec(p1,p2:Integer): Double; Begin result:= (H[p2]*yH[p1]-H[p1]*yH[p2])/(H[p2]-H[p1]); End;
begin
//分配记录等值线的数组
for i:= 0 to Length(FLevers)-1 do
if Assigned(FLevers[i].Points) then
FLevers[i].Points.Free;
SetLength(FLevers,ZCount);
for i:= 0 to ZCount-1 do
begin
FLevers[i].FZ:= Z[i];
FLevers[i].Points:= TList.Create;
end;
//每个三角行内出现等值点的情况映射,有27种情况
//这27种情况是根据三角形的三个顶点高程与等值点
//的大小比较得来得,每个点有三种情况:大、小、等
//0..19 为 对各种情况的处理方法,有20种
CastTab[0,0,0]:= 0; CastTab[0,0,1]:= 0; CastTab[0,0,2]:= 1;
CastTab[0,1,0]:= 0; CastTab[0,1,1]:= 2; CastTab[0,1,2]:= 3; CastTab[0,2,0]:= 4; CastTab[0,2,1]:= 5; CastTab[0,2,2]:= 6; CastTab[1,0,0]:= 0; CastTab[1,0,1]:= 7; CastTab[1,0,2]:= 8; CastTab[1,1,0]:= 9; CastTab[1,1,1]:= 10; CastTab[1,1,2]:= 9; CastTab[1,2,0]:= 8; CastTab[1,2,1]:= 7; CastTab[1,2,2]:= 0; CastTab[2,0,0]:= 6; CastTab[2,0,1]:= 5; CastTab[2,0,2]:= 4; CastTab[2,1,0]:= 3; CastTab[2,1,1]:= 2; CastTab[2,1,2]:= 0; CastTab[2,2,0]:= 1; CastTab[2,2,1]:= 0; CastTab[2,2,2]:= 0;
for i:= 1 to TriangleCount do
begin
//获得三角形三个顶点中的最小值和最大值
TempD1:= min(FVertexs^[FTriangles^[i].vv0].Z,FVertexs^[FTriangles^[i].vv1].Z);
TempD2:= min(FVertexs^[FTriangles^[i].vv1].Z,FVertexs^[FTriangles^[i].vv2].Z);
dMin:= min(TempD1,TempD2);
TempD1:= max(FVertexs^[FTriangles^[i].vv0].Z,FVertexs^[FTriangles^[i].vv1].Z);
TempD2:= max(FVertexs^[FTriangles^[i].vv1].Z,FVertexs^[FTriangles^[i].vv2].Z);
dMax:= max(TempD1,TempD2);
for j:= 0 to ZCount-1 do
if (Z[j] >= dMin) And (Z[j] <= dMax) Then
begin
H[0] := FVertexs^[FTriangles^[i].vv0].Z-Z[j];
xH[0]:= FVertexs^[FTriangles^[i].vv0].X;
yH[0]:= FVertexs^[FTriangles^[i].vv0].Y;
H[1] := FVertexs^[FTriangles^[i].vv1].Z-Z[j];
xH[1]:= FVertexs^[FTriangles^[i].vv1].X;
yH[1]:= FVertexs^[FTriangles^[i].vv1].Y;
H[2] := FVertexs^[FTriangles^[i].vv2].Z-Z[j];
xH[2]:= FVertexs^[FTriangles^[i].vv2].X;
yH[2]:= FVertexs^[FTriangles^[i].vv2].Y;
for m:= 0 to 2 do
If H[m] > 0 Then
sH[m]:= 1 Else If H[m]<0 Then sH[m]:= -1 Else sH[m]:= 0;
Deside := CastTab[sH[0]+1 ,sH[1]+1, sH[2]+1];
If NOT(deside = 0) Then // 0的情况不处理
begin
Case deside Of
1: begin x1:= xSec(0,2); y1:= ySec(0,2); x2:= xSec(1,2); y2:= ySec(1,2); end; 2: begin x1:= xH[1]; y1:= yH[1]; x2:= xH[2]; y2:= yH[2]; end; 3: begin x1:= xH[1]; y1:= yH[1]; x2:= xSec(0,2); y2:= ySec(0,2); end; 4: begin x1:= xSec(0,1); y1:= ySec(0,1); x2:= xSec(1,2); y2:= ySec(1,2); end; 5: Begin x1:= xH[2]; y1:= yH[2]; x2:= xSec(0,1); y2:= ySec(0,1); End; 6: Begin x1:= xSec(0,1); y1:= ySec(0,1); x2:= xSec(0,2); y2:= ySec(0,2); End; 7: Begin x1:= xH[0]; y1:= yH[0]; x2:= xH[2]; y2:= yH[2]; End; 8: Begin x1:= xH[0]; y1:= yH[0]; x2:= xSec(1,2); y2:= ySec(1,2); End; 9: Begin x1:= xH[0]; y1:= yH[0]; x2:= xH[1]; y2:= yH[1]; End;
10: begin //there is some argument here
x1:= xH[0];
y1:= yH[0]; x2:= xH[2]; y2:= yH[2];
end;
end;//----case
//此处获得该三角形内的等值点
New(ARecord);
ARecord^.x1:= x1;
ARecord^.y1:= y1;
ARecord^.x2:= x2;
ARecord^.y2:= y2;
FLevers[j].Points.Add(ARecord);
end; //if not(deside)
end;// if Z[]
end;
end;
end.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -