⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 t2runtim.c

📁 I. A brief description of the aiNet application. II. How to set up the aiNet on your system. III. So
💻 C
字号:
/* ----------------------------------------------------------------------- *
 *                                                                         *
 *    (C) Copyright 1996 by:  aiNet                                        *
 *										Trubarjeva 42, SI-3000 Celje                 *
 *										Europe, Slovenia                             *
 *     All Rights Reserved                                                 *
 *                                                                         *
 *     Subject: C code for single vector prediction.                       *
 *     File:    t2runtim - The XOR problem with dynamic model creation     *
 *                                                                         *
 * ----------------------------------------------------------------------- */

/*--------------------------------------------------------------------------
	Here it will be shown how we can solve the XOR problem using
	aiNet C functions. The problem is the same as in DLLTST02.

	The XOR problem:
	================
		Number of model vectors: 4
			 Number of variables: 3
	 Number of input variables: 3
		 Any discrete variables: NONE

		Model vectors:  Inp,Inp,Out
				  row 1:  1,  1,  0
				  row 2:  1,  0,  1
				  row 3:  0,  1,  1
				  row 4:  0,  0,  0

	Test vectors (vectors which will be used in prediction) together with
	penalty coefficient and penalty method.

		 Prediction vectors:  Inp  Inp  Out
						  prd 1:  0.9  0.1  ??
						  prd 2:  0.1  0.9  ??
						  prd 3:  0.2  0.2  ??
						  prd 4:  0.7  0.7  ??

		 Penalty coeffcient: 1.5
		 Penalty methods:    NEAREST

	NOTE: Selected penalty coefficients are in no case optimal.
			They were selected randomly, to perform a few tests.
			The test results were compared with the results calculated by
			the main aiNet 1.14 application.

	--------------------------------------------------------------------------
	Results (rounded at fourth decimal):
	--------------------------------------------------------------------------

		 Penalty cefficient: 1.5
		 Penalty method:     NEAREST N.
												  (RESULT)
		 Prediction vectors:  Inp  Inp  (  Out )
						  prd 1:  0.9  0.1  (0.9989)
						  prd 2:  0.1  0.9  (0.9989)
						  prd 3:  0.2  0.2  (0.1054)
						  prd 4:  0.7  0.7  (0.3449)

	-------------------------------------------------------------------------*/

   /*
    * This file assumes that ainetxx.dll will be loaded at run time,
    * which is default option and no flags need to be defined.
    * ainetxx.lib must NOT be included in the linking process.
    */

#include "ainetdll.h"
#include <stdio.h>
#include <stdlib.h>

/*
 * Path and the filename of dll which will be loaded.
 */

#if defined(__WIN32__)
const char ainetDll[] = "ainet32.dll";
#else
const char ainetDll[] = "ainet16.dll";
#endif
/*
 * Pointers to ainet dll functions. They are made global - all functions
 * can use them.
 */

t_aiRegistration              aiRegistration;
t_aiGetVersion                aiGetVersion;
t_aiCreateModel               aiCreateModel;
t_aiCreateModelFromCSVFile    aiCreateModelFromCSVFile;
t_aiDeleteModel               aiDeleteModel;
t_aiNormalize                 aiNormalize;
t_aiDenormalize               aiDenormalize;
t_aiPrediction                aiPrediction;
t_aiGetNumberOfVariables      aiGetNumberOfVariables;
t_aiGetNumberOfModelVectors   aiGetNumberOfModelVectors;
t_aiGetNumberOfInputVariables aiGetNumberOfInputVariables;
t_aiSetDiscreteFlag           aiSetDiscreteFlag;
t_aiGetDiscreteFlag           aiGetDiscreteFlag;
t_aiSetVariable               aiSetVariable;
t_aiGetVariable               aiGetVariable;
t_aiGetVariableVB             aiGetVariableVB;
t_aiGetCSVFileModelSize       aiGetCSVFileModelSize;
// New in version 1.24
t_aiSetCapacity					aiSetCapacity;
t_aiGetCapacity					aiGetCapacity;
t_aiGetFreeEntries				aiGetFreeEntries;
t_aiInsertModelVector			aiInsertModelVector;
t_aiOverwriteModelVector		aiOverwriteModelVector;
t_aiAppendModelVector			aiAppendModelVector;
t_aiDeleteModelVector			aiDeleteModelVector;
t_aiPredictionEx					aiPredictionEx;
t_aiExcludeModelVector			aiExcludeModelVector;
t_aiExcludeModelVectorRange	aiExcludeModelVectorRange;
t_aiIsModelVectorExcluded		aiIsModelVectorExcluded;
t_aiSaveCSVFile					aiSaveCSVFile;

/*
 *  ainet32.dll module variable.
 */

HINSTANCE hLib;

/*
 *  The load_aiNetLibrary() function is implemented below.
 *  This function will load ainet32.dll and define pointers to
 *  ainet functions.
 */

int load_aiNetLibrary(void);

/*
 *
 */

void main()
{

   /*
    * Working variables
    */

	int i;
	int version;

	/*
	 * vectors to be predicted
	 */

	float predict[4][3] = { { 0.9,0.1, 999 },
									{ 0.1,0.9, 999 },
									{ 0.2,0.2, 999 },
									{ 0.7,0.7, 999 } };
	/*
	 * Model variable
	 */

	aiModel* model;

   /*
    * Load DLL
    */
   if( !load_aiNetLibrary() ) {
		exit(EXIT_FAILURE);
	}

	/*
	 * Title
	 */

	version = aiGetVersion();
	printf( "\naiNetDLL version %i.%i! (C) Copyright by aiNet, 1996",
			  version/100, version%100 );
	printf( "\n---------------------------------------------------\n" );

	/*
	 * Register DLL
	 */

	aiRegistration( "Your registration name", "Your code" );

	/*
	 * Allocate the model variable and necessary memory
	 */

	model = aiCreateModel(4,   /* 4 model vectors   */
						   	  3,   /* 3 variables       */
							 	  2);  /* 2 input variables */
	if(!model) {
		printf( "\nError: Something went wrong during model creation!" );
		exit(EXIT_FAILURE);
	}

	/*
	 * Loading data into the model using aiSetVariable function
	 */

	aiSetVariable(model,1,1, 1.0); /* first model vector */
	aiSetVariable(model,1,2, 1.0); /* 1 xor 1 = 0        */
	aiSetVariable(model,1,3, 0.0);

	aiSetVariable(model,2,1, 1.0); /* second model vector */
	aiSetVariable(model,2,2, 0.0); /* 1 xor 0 = 1         */
	aiSetVariable(model,2,3, 1.0);

	aiSetVariable(model,3,1, 0.0); /* third model vector */
	aiSetVariable(model,3,2, 1.0); /* 0 xor 1 = 1        */
	aiSetVariable(model,3,3, 1.0);

	aiSetVariable(model,4,1, 0.0); /* fourth model vector */
	aiSetVariable(model,4,2, 0.0); /* 0 xor 0 = 0         */
	aiSetVariable(model,4,3, 0.0);

	/*
	 * Output the model
	 */

	printf( "\n             Model name: aiNet DLL test 2 (aiCreateModel)" );
	printf( "\nNumber of model vectors: %i", aiGetNumberOfModelVectors(model));
	printf( "\n    Number of variables: %i", aiGetNumberOfVariables(model));
	printf( "\n         Variable names: A,   B,   A xor B" );
	printf( "\n          Discrete flag: %i,   %i,   %i",
			  aiGetDiscreteFlag(model,1),
			  aiGetDiscreteFlag(model,2),
			  aiGetDiscreteFlag(model,3) );
	for( i=1; i<=aiGetNumberOfModelVectors(model); i++ ) {
		printf( "\n\t\t\t %3.1lf, %3.1lf, %3.1lf",
				  aiGetVariable(model, i,1),
				  aiGetVariable(model, i,2),
				  aiGetVariable(model, i,3) );
	}

	/*
	 * Normalize the model
	 */

	aiNormalize(model, NORMALIZE_REGULAR);

	/*
	 * Prediction
	 * This test has nearest neighbour penalty coefficient 1.50
	 */

	printf( "\n\n  Penalty coefficient: 1.50" );
	printf(   "\n       Penalty method: NEAREST N." );
	printf(   "\n\t A(inp), B(inp), A xor B(out)" );
	for ( i=0; i<4; i++ ) {
		aiPrediction(model, predict[i], 1.50, PENALTY_NEAREST);
		printf( "\n\t%7.4lf, %7.4lf, %7.4lf",
				  predict[i][0],predict[i][1],predict[i][2] );
	}

	/*
	 * Denormalize the model (in this case it is not necessary)
	 */

	aiDenormalize(model);

	/*
	 * Free alocated memory
	 */

	aiDeleteModel(model);
   FreeLibrary(hLib);

	printf( "\n\nEnd." );
	exit(EXIT_SUCCESS);
}

int load_aiNetLibrary()
{
   /*
    * Load the Dynamic Link Library AINET32.DLL
    */

   hLib = LoadLibrary(ainetDll);
   if((unsigned)hLib<=HINSTANCE_ERROR){
      char bfr[40];
      wsprintf(bfr, "Failure loading library: %s", ainetDll);
      MessageBox(NULL, bfr, "Error", MB_OK|MB_APPLMODAL);
      return 0;
   }

   /*
    * Get all the entry points for the functions in ainet32.dll
    */

	aiRegistration              = (t_aiRegistration)              GetProcAddress(hLib, "aiRegistration");
   aiGetVersion                = (t_aiGetVersion)                GetProcAddress(hLib, "aiGetVersion");
   aiCreateModel               = (t_aiCreateModel)               GetProcAddress(hLib, "aiCreateModel");
   aiCreateModelFromCSVFile    = (t_aiCreateModelFromCSVFile)    GetProcAddress(hLib, "aiCreateModelFromCSVFile");
   aiDeleteModel               = (t_aiDeleteModel)               GetProcAddress(hLib, "aiDeleteModel");
   aiNormalize                 = (t_aiNormalize)                 GetProcAddress(hLib, "aiNormalize");
   aiDenormalize               = (t_aiDenormalize)               GetProcAddress(hLib, "aiDenormalize");
   aiPrediction                = (t_aiPrediction)                GetProcAddress(hLib, "aiPrediction");
   aiGetNumberOfVariables      = (t_aiGetNumberOfVariables)      GetProcAddress(hLib, "aiGetNumberOfVariables");
   aiGetNumberOfModelVectors   = (t_aiGetNumberOfModelVectors)   GetProcAddress(hLib, "aiGetNumberOfModelVectors");
   aiGetNumberOfInputVariables = (t_aiGetNumberOfInputVariables) GetProcAddress(hLib, "aiGetNumberOfInputVariables");
   aiSetDiscreteFlag           = (t_aiSetDiscreteFlag)           GetProcAddress(hLib, "aiSetDiscreteFlag");
   aiGetDiscreteFlag           = (t_aiGetDiscreteFlag)           GetProcAddress(hLib, "aiGetDiscreteFlag");
   aiSetVariable               = (t_aiSetVariable)               GetProcAddress(hLib, "aiSetVariable");
   aiGetVariable               = (t_aiGetVariable)               GetProcAddress(hLib, "aiGetVariable");
   aiGetVariableVB             = (t_aiGetVariableVB)             GetProcAddress(hLib, "aiGetVariableVB");
   aiGetCSVFileModelSize       = (t_aiGetCSVFileModelSize)       GetProcAddress(hLib, "aiGetCSVFileModelSize");
   aiSetCapacity               = (t_aiSetCapacity)               GetProcAddress(hLib, "aiSetCapacity");
   aiGetCapacity               = (t_aiGetCapacity)               GetProcAddress(hLib, "aiGetCapacity");
   aiGetFreeEntries            = (t_aiGetFreeEntries)            GetProcAddress(hLib, "aiGetFreeEntries");
   aiInsertModelVector         = (t_aiInsertModelVector)         GetProcAddress(hLib, "aiInsertModelVector");
   aiOverwriteModelVector      = (t_aiOverwriteModelVector)      GetProcAddress(hLib, "aiOverwriteModelVector");
   aiAppendModelVector         = (t_aiAppendModelVector)         GetProcAddress(hLib, "aiAppendModelVector");
   aiDeleteModelVector         = (t_aiDeleteModelVector)         GetProcAddress(hLib, "aiDeleteModelVector");
   aiPredictionEx              = (t_aiPredictionEx)              GetProcAddress(hLib, "aiPredictionEx");
   aiExcludeModelVector        = (t_aiExcludeModelVector)        GetProcAddress(hLib, "aiExcludeModelVector");
   aiExcludeModelVectorRange   = (t_aiExcludeModelVectorRange)   GetProcAddress(hLib, "aiExcludeModelVectorRange");
   aiIsModelVectorExcluded     = (t_aiIsModelVectorExcluded)     GetProcAddress(hLib, "aiIsModelVectorExcluded");
   aiSaveCSVFile               = (t_aiSaveCSVFile)               GetProcAddress(hLib, "aiSaveCSVFile");

   /*
    * GetProcAddress returns null on failure
    */
   if( aiRegistration == NULL
       || aiGetVersion == NULL
       || aiCreateModel == NULL
       || aiCreateModelFromCSVFile == NULL
       || aiDeleteModel == NULL
       || aiNormalize == NULL
       || aiDenormalize == NULL
       || aiPrediction == NULL
       || aiGetNumberOfVariables == NULL
       || aiGetNumberOfModelVectors == NULL
       || aiGetNumberOfInputVariables == NULL
       || aiSetDiscreteFlag == NULL
       || aiGetDiscreteFlag == NULL
       || aiSetVariable == NULL
       || aiGetVariable == NULL
       || aiGetVariableVB == NULL
       || aiGetCSVFileModelSize == NULL
		 || aiSetCapacity == NULL
       || aiGetCapacity == NULL
       || aiGetFreeEntries == NULL
       || aiInsertModelVector == NULL
       || aiOverwriteModelVector == NULL
       || aiAppendModelVector == NULL
       || aiDeleteModelVector == NULL
       || aiPredictionEx == NULL
       || aiExcludeModelVector == NULL
       || aiExcludeModelVectorRange == NULL
       || aiIsModelVectorExcluded == NULL
       || aiSaveCSVFile == NULL ) {
		MessageBox(NULL, "Failure locating procedures.", "Error",
            MB_OK|MB_APPLMODAL);
      return 0;
	}
   return 1;
}

/* THE END */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -