📄 aligneval.c
字号:
* We have to keep separate track of our position in the list (lpos) * from our positions in the raw sequences (r1,r2) */ r1 = r2 = lpos = 0; for (col = 0; s1[col] != '\0'; col++) { if (! isgap(s1[col]) && canons1[r1]) { s1_list[lpos] = isgap(s2[col]) ? -1 : r2; lpos++; } if (! isgap(s1[col])) r1++; if (! isgap(s2[col])) r2++; } free(canons1); *ret_listlen = lpos; *ret_s1_list = s1_list; return 1;}/* Function: compare_lists() * * Purpose: Given four alignment lists (k1,k2, t1,t2), calculate the * alignment score. * * Args: k1 - list of k1's alignment to k2 * k2 - list of k2's alignment to k1 * t1 - list of t1's alignment to t2 * t2 - list of t2's alignment to t2 * len1 - length of k1, t1 lists (same by definition) * len2 - length of k2, t2 lists (same by definition) * ret_sc - RETURN: identity score of alignment * * Return: 1 on success, 0 on failure. */ static intcompare_lists(int *k1, int *k2, int *t1, int *t2, int len1, int len2, float *ret_sc){ float id; float tot; int i; id = tot = 0.0; for (i = 0; i < len1; i++) { tot += 1.0; if (t1[i] == k1[i]) id += 1.0; } for ( i = 0; i < len2; i++) { tot += 1.0; if (k2[i] == t2[i]) id += 1.0; } *ret_sc = id / tot; return 1;}/* Function: CompareMultAlignments * * Purpose: Invokes pairwise alignment comparison for every possible pair, * and returns the average score over all N(N-1) of them or -1.0 * on an internal failure. * * Can be slow for large N, since it's quadratic. * * Args: kseqs - trusted multiple alignment * tseqs - test multiple alignment * N - number of sequences * * Return: average identity score, or -1.0 on failure. */floatCompareMultAlignments(char **kseqs, char **tseqs, int N){ int i, j; /* counters for sequences */ float score; float tot_score = 0.0; /* do all pairwise comparisons */ for (i = 0; i < N; i++) for (j = i+1; j < N; j++) { score = ComparePairAlignments(kseqs[i], kseqs[j], tseqs[i], tseqs[j]); if (score < 0.0) return -1.0; tot_score += score; } return ((tot_score * 2.0) / ((float) N * ((float) N - 1.0)));}/* Function: CompareRefMultAlignments() * * Purpose: Same as above, except an array of reference coords for * the canonical positions of the known alignment is also * provided. * * Args: ref : 0..alen-1 array of 1/0 flags, 1 if canon * kseqs : trusted alignment * tseqs : test alignment * N : number of sequences * * Return: average identity score, or -1.0 on failure */floatCompareRefMultAlignments(int *ref, char **kseqs, char **tseqs, int N){ int i, j; /* counters for sequences */ float score; float tot_score = 0.0; /* do all pairwise comparisons */ for (i = 0; i < N; i++) for (j = i+1; j < N; j++) { score = CompareRefPairAlignments(ref, kseqs[i], kseqs[j], tseqs[i], tseqs[j]); if (score < 0.0) return -1.0; tot_score += score; } return ((tot_score * 2.0)/ ((float) N * ((float) N - 1.0)));}/* Function: PairwiseIdentity() * * Purpose: Calculate the pairwise fractional identity between * two aligned sequences s1 and s2. This is simply * (idents / MIN(len1, len2)). * * Note how many ways there are to calculate pairwise identity, * because of the variety of choices for the denominator: * idents/(idents+mismat) has the disadvantage that artifactual * gappy alignments would have high "identities". * idents/(AVG|MAX)(len1,len2) both have the disadvantage that * alignments of fragments to longer sequences would have * artifactually low "identities". * * Case sensitive; also, watch out in nucleic acid alignments; * U/T RNA/DNA alignments will be counted as mismatches! */floatPairwiseIdentity(char *s1, char *s2){ int idents; /* total identical positions */ int len1, len2; /* lengths of seqs */ int x; /* position in aligned seqs */ idents = len1 = len2 = 0; for (x = 0; s1[x] != '\0' && s2[x] != '\0'; x++) { if (!isgap(s1[x])) { len1++; if (s1[x] == s2[x]) idents++; } if (!isgap(s2[x])) len2++; } if (len2 < len1) len1 = len2; return (len1 == 0 ? 0.0 : (float) idents / (float) len1);}/* Function: AlignmentIdentityBySampling() * Date: SRE, Mon Oct 19 14:29:01 1998 [St. Louis] * * Purpose: Estimate and return the average pairwise * fractional identity of an alignment, * using sampling. * * For use when there's so many sequences that * an all vs. all rigorous calculation will * take too long. * * Case sensitive! * * Args: aseq - aligned sequences * L - length of alignment * N - number of seqs in alignment * nsample - number of samples * * Returns: average fractional identity, 0..1. */floatAlignmentIdentityBySampling(char **aseq, int L, int N, int nsample){ int x, i, j; /* counters */ float sum; if (N < 2) return 1.0; sum = 0.; for (x = 0; x < nsample; x++) { i = CHOOSE(N); do { j = CHOOSE(N); } while (j == i); /* make sure j != i */ sum += PairwiseIdentity(aseq[i], aseq[j]); } return sum / (float) nsample;}/* Function: MajorityRuleConsensus() * Date: SRE, Tue Mar 7 15:30:30 2000 [St. Louis] * * Purpose: Given a set of aligned sequences, produce a * majority rule consensus sequence. If >50% nonalphabetic * (usually meaning gaps) in the column, ignore the column. * * Args: aseq - aligned sequences, [0..nseq-1][0..alen-1] * nseq - number of sequences * alen - length of alignment * * Returns: ptr to allocated consensus sequence. * Caller is responsible for free'ing this. */char *MajorityRuleConsensus(char **aseq, int nseq, int alen){ char *cs; /* RETURN: consensus sequence */ int count[27]; /* counts for a..z and gaps in a column */ int idx,apos; /* counters for seq, column */ int spos; /* position in cs */ int x; /* counter for characters */ int sym; int max, bestx; cs = MallocOrDie(sizeof(char) * (alen+1)); for (spos=0,apos=0; apos < alen; apos++) { for (x = 0; x < 27; x++) count[x] = 0; for (idx = 0; idx < nseq; idx++) { if (isalpha(aseq[idx][apos])) { sym = toupper(aseq[idx][apos]); count[sym-'A']++; } else { count[26]++; } } if ((float) count[26] / (float) nseq <= 0.5) { max = bestx = -1; for (x = 0; x < 26; x++) if (count[x] > max) { max = count[x]; bestx = x; } cs[spos++] = (char) ('A' + bestx); } } cs[spos] = '\0'; return cs;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -