⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 grow_tree.m

📁 matlab/e,radial basis function
💻 M
字号:
function [tree, conf] = grow_tree(X, y, conf)%% Grow a regression tree by recursive splitting.%% Training data in X (inputs) and y (outputs), configuration% structure conf. Returns a tree structure tree and fully% instantiated configuration structure conf.%% For further details of the function see:%%  'Matlab Routines for RBF Networks', 1999.%% Program name (for error messages).prog = 'grow_tree';% Configuration specification.spec(1) = struct( ...  'comment', 'Minimum membership', ...  'name', 'minm', ...  'type', {{'number', 'positive', 'integer'}}, ...  'options', [], ...  'default', 5);spec(2) = struct( ...  'comment', 'Placement of centres', ...  'name', 'place', ...  'type', 'string', ...  'options', {{'centre', 'edge', 'both'}}, ...  'default', 'centre');spec(3) = struct( ...  'comment', 'Verbose output', ...  'name', 'verb', ...  'type', 'number', ...  'options', {{0 1}}, ...  'default', 0);spec(4) = struct( ...  'comment', 'Print final summary', ...  'name', 'rprt', ...  'type', 'number', ...  'options', {{0, 1}}, ...  'default', 0);% Check number of arguments. Take special action if only one.switch nargincase 1  if isstring(X)    switch X    case 'conf'      conf_print(prog, spec)      return    otherwise      error([prog ': ''' X ''' unrecognised for single string argument'])    end  else    error([prog ': unrecognised type for single argument'])  endcase 2  if isstring(X) & isstring(y)    switch X    case 'conf'      conf_print(prog, spec, y)      return    otherwise      error([prog ': ''' X ''' unrecognised for double string argument'])    end  else    conf = [];  endcase 3otherwise  error([prog ': illegal number of arguments'])end% Check type of input arguments.if ~isnumeric(X) | ndims(X) ~= 2  error([prog ': first argument (X) should be a matrix'])endif ~isnumeric(y) | ndims(y) ~= 2 | size(y,2) ~= 1  error([prog ': second argument (y) should be a column vector'])end% Check for consistent size between X and y.[d,p] = size(X);if size(y,1) ~= p  error([prog ': number of samples inconsistent between X and y'])end% Check the configuration is okay and set defaults (if required).conf = conf_check(conf, spec, prog);% Initialisation for flops and time.if conf.rprt  comps = flops;  ticks = clock;end% Initialize the tree.tree = initTree(X, y);% Start splitting at the first node.tree = splitTree(tree, 1, conf);% Print a report.if conf.rprt  comps = flops - comps;  ticks = etime(clock,ticks);  fprintf('-------- %s report --------\n', prog)  fprintf('minm:          %d\n', conf.minm)  fprintf('nodes:         %d\n', tree.numn)  fprintf('levels:        %d\n', tree.level)  fprintf('split numbers: '), fprintf('%d ', tree.split.number), fprintf('\n')  fprintf('split order:   '), fprintf('%d ', tree.split.order), fprintf('\n')  fprintf('flops:         %d\n', comps)  fprintf('time:          %.3f\n', ticks)  fprintf('----------------------------------\n')endfunction tree = initTree(X, y)%% Initialises a tree and its root node ready for splitting.%% Size of X.[d, p] = size(X);% Number of patterns in root node.n.p = p;% Sorted x and y values.[sX, n.iX] = sort(X,2);% Extreme limits of data.n.lim = zeros(d,2);for k = 1:d  n.lim(k,:) = [X(k,n.iX(k,1)) X(k,n.iX(k,end))];end% Are edges of cell also edges of data?n.edge = ones(d,2);% Average y value.n.ave = sum(y) / p;% Total squared error.n.err = sum((y - n.ave).^2);% Split (as yet unknown).n.split = [];% Centre position and size of the corresponding RBF.n.c = (n.lim(:,2) + n.lim(:,1)) / 2;n.r = (n.lim(:,2) - n.lim(:,1)) / 2;% Level of node in tree.n.level = 1;% Index in tree's list of nodes.n.indx = 1;% Initially, the array of nodes contains only the root.tree.node = n;% Current number of nodes and terminals.tree.numn = 1;% Input dimensions.tree.p = p;tree.d = d;% Original data.tree.X = X;tree.y = y;% Initialise maximum level in tree.tree.level = 1;% Initialise number of splits and slit order in each dimension.tree.split.number = zeros(1,d);tree.split.order = zeros(1,d);function tree = splitTree(tree, ind, conf)%% Split a node in the tree.%% What node.n = tree.node(ind);% Some new names for convenience.p = n.p;d = tree.d;% Set up sorted y values.Y = zeros(d,p);for k = 1:d  Y(k,:) = tree.y(n.iX(k,:))';end% Initialise on the split with minimal sized left node.i = conf.minm;L = Y(:,1:i);l = sum(L,2);la = l / i;LA = la(:,ones(1,i));R = Y(:,(i+1):p);r = sum(R,2);ra = r / (p-i);RA = ra(:,ones(1,p-i));E = [sum((L - LA).^2,2) sum((R - RA).^2,2)];e = sum(E,2);x1 = tree.X(sub2ind([d tree.p],1:d,n.iX(:,i)'));x2 = tree.X(sub2ind([d tree.p],1:d,n.iX(:,i+1)'));deg = find(x1 == x2);if ~isempty(deg)  e(deg) = Inf * e(deg);end[be, bd] = min(e);bE = E(bd,:);bi = i;bla = la(bd);bra = ra(bd);% Find the best amongst of all splits over all dimensions.for i = (conf.minm+1):(p-conf.minm)  L = Y(:,1:i);  l = l + Y(:,i);  la = l / i;  LA = la(:,ones(1,i));  R = Y(:,(i+1):p);  r = r - Y(:,i);  ra = r / (p-i);  RA = ra(:,ones(1,p-i));  E = [sum((L - LA).^2,2) sum((R - RA).^2,2)];  e = sum(E,2);  x1 = tree.X(sub2ind([d tree.p],1:d,n.iX(:,i)'));  x2 = tree.X(sub2ind([d tree.p],1:d,n.iX(:,i+1)'));  deg = find(x1 == x2);  if ~isempty(deg)    e(deg) = Inf * e(deg);  end  [e1, d1] = min(e);  if e1 < be    be = e1;    bd = d1;    bE = E(bd,:);    bi = i;    bla = la(bd);    bra = ra(bd);  endend% Check split won't create zero width hyperrectangle.if be == Inf  returnend% Update current node.bv = (tree.X(bd,n.iX(bd,bi)) + tree.X(bd,n.iX(bd,bi+1))) / 2;n.split.val = bv;n.split.dim = bd;n.split.err = be;% Update tree split statistics.tree.split.number(bd) = tree.split.number(bd) + 1;if ~tree.split.order(bd)  tree.split.order(bd) = max(tree.split.order) + 1;end% Create left node.l.p = bi;l.iX = zeros(d,l.p);for k = 1:d  if k == bd    l.iX(k,:) = n.iX(k,1:l.p);  else    l.iX(k,:) = n.iX(k,find(ismember(n.iX(k,:),n.iX(bd,1:l.p))));  endendl.lim = n.lim;l.lim(bd,2) = bv;l.edge = n.edge;l.edge(bd,2) = 0;l.ave = bla;l.err = bE(1);l.split = [];[l.c, l.r] = get_cr(d, l.lim, l.edge, conf.place);% Create right node.r.p = p - bi;r.iX = zeros(d,r.p);for k = 1:d  if k == bd    r.iX(k,:) = n.iX(k,(l.p+1):end);  else    r.iX(k,:) = n.iX(k,find(ismember(n.iX(k,:),n.iX(bd,(l.p+1):end))));  endendr.lim = n.lim;r.lim(bd,1) = bv;r.edge = n.edge;r.edge(bd,1) = 0;r.ave = bra;r.err = bE(2);r.split = [];[r.c, r.r] = get_cr(d, r.lim, r.edge, conf.place);% The children are on the next level.nlevel = n.level + 1;l.level = nlevel;r.level = nlevel;if nlevel > tree.level  tree.level = nlevel;end% Update the tree with the new children.tree.numn = tree.numn + 1;lind = tree.numn;l.indx = lind;tree.node = [tree.node l];tree.numn = tree.numn + 1;rind = tree.numn;r.indx = rind;tree.node = [tree.node r];% Update the current node in the tree.n.split.l = l.indx;n.split.r = r.indx;tree.node(ind) = n;% Try to grow the children.if l.p >= 2 * conf.minm  if conf.verb    fprintf('spitting %d samples in left node %d\n', l.p, lind)  end  tree = splitTree(tree, lind, conf);endif r.p >= 2 * conf.minm  if conf.verb    fprintf('spitting %d samples in right node %d\n', r.p, rind)  end  tree = splitTree(tree, rind, conf);endfunction [c, r] = get_cr(d, lim, edge, place);if strcmp(place,'edge') | strcmp(place,'both')  ec = zeros(d,1);  er = zeros(d,1);  for k = 1:d    if edge(k,1) == edge(k,2)      ec(k) = (lim(k,2) + lim(k,1)) / 2;      er(k) = (lim(k,2) - lim(k,1)) / 2;    elseif edge(k,1)      ec(k) = lim(k,1);      er(k) = lim(k,2) - lim(k,1);    else      ec(k) = lim(k,2);      er(k) = lim(k,2) - lim(k,1);    end  endendif strcmp(place,'centre') | strcmp(place,'both')  cc = (lim(:,2) + lim(:,1)) / 2;  cr = (lim(:,2) - lim(:,1)) / 2;endswitch placecase 'edge'  c = ec;  r = er;case 'centre'  c = cc;  r = cr;case 'both'  if sum(abs(ec - cc)) < d * eps & sum(abs(er - cr)) < d * eps    c = ec;    r = er;  else    c = [ec cc];    r = [er cr];  endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -